
Metacard Concepts and Techniques

Reference Manual
Metacard Classes

Gh. C. -- 08/12/2016

 1#204

Index A

Introduction

Objects

Stacks

The Home Stack

The defaultStack and the topStack

mainStacks, substacks, and stackFiles

Menu Panels

Cards

Groups and Backgrounds

Radio Groups and Traversal

Buttons

Menu Modes

Button Contents Menus

menuName Menus

Fields

Field Keyboard Functions

Scrollbars

Images

Icons, Patterns, Brushes, & Cursors

Painting

 2#204

Tools

Graphics

Players

EPS objects

AudioClips

VideoClips

Scripting

Terms

Container

Constant

Literal

Chunk

Factor

Expression

Properties and Custom Properties

Handlers

Message Handlers

Function Handlers

Setprop Handlers

Getprop Handlers

Debugging Scripts

 3#204

Improving Performance

Geometry Management

Hypermedia

Building Hypertext Links

Sound

Animation

Object Based Animation

Frame Based Animation

The Outside World

Importing HyperCard and SuperCard stacks

open process and shell()

Import/Export

External Commands and Functions

Communicating with MetaCard

MetaTalk as a CGI or batch scripting language

Introduction

To get the most out of MetaCard, there are a few key concepts and techniques that
you should master. This stack is a collection of those concepts and techniques. If you
haven't yet, you should go through the first one or two MetaCard Tutorials stacks
before trying to digest this one.
If you don't have time to read this whole section, at least quickly skim this whole
stack the first time through. What you don't retain the first time, you will be able to
find more easily if you need it later.
There are a couple of different ways to navigate in this stack. You can use the
buttons provided at the bottom of each card or you can use the Navigator stack
(from the "Tools" menu) or the keyboard equivalents of the Navigator buttons, the

 4#204

arrow keys. See the help for the Navigator stack for details (press F1 or the keyboard
Help key when the navigator stack has the keyboard focus to get help on that stack).
As in the MetaCard Tutorials stack, words in blue are hypertext links to other cards
or stacks. Click on them to go to the referenced object. Words in the Courier font
are MetaTalk terms and you can also look most of them up in the MetaTalk
Reference stack by clicking on them.
The Find dialog (in the Tools menu) can also be used with this stack (and with the
reference stack). Or you can type a "find" command into the Message Box to find a
piece of information if you only know a word or two.
If you don't find what you need to know here or in the MetaTalk Reference or
Dialog Box Help stacks, purchasing one of the many books on Apple/Claris
HyperCard, such as Danny Goodman's The Complete HyperCard 2.0 Handbook
or Dan Winkler's HyperTalk 2.0: The Book and Cooking with HyperTalk 2.0,
may prove helpful. You can also contact MetaCard Corporation using the supplied
Support stack.
Developing GUI applications that are easy to learn and easy to use can be a difficult
task. If you don't have any experience in this area, there are many books that can help
you avoid the most common pitfalls. Among them are:
The Art of human-computer interface design by Brenda Laurel.
The cross-GUI handbook : for multiplatform user interface design by Aaron
Marcus, Nick Smilonich, and Lynne Thompson.
Tog on software design by Bruce Tognazzini.
Usability Engineering by Jakob Nielson
It would also be a good idea to have some background knowledge of the look and
feel standards for whichever platform you're using. On UNIX/X11 systems this
information is in the OSF/Motif User's Guide and the OSF/Motif Style Guide.
There are similar guides for Microsoft Windows and MacOS.

Objects

MetaCard objects are what you see and interact with when using MetaCard. There
are twelve classes of MetaCard objects:
stacks,

cards,

groups (backgrounds),

buttons,

fields,

images,

 5#204

graphics,

players,

EPS objects,

scrollbars,

audioClips, and
videoClips.
Groups, buttons, fields, images, graphics, EPS objects, and scrollbars are also
referred to as controls since they are the elements the user interacts with.
An object's properties govern the way it looks and the way it responds to the user
actions. These properties can be defined or viewed using the dialogs in the MetaCard
development environment (which itself is just a collection of MetaCard objects).
You can also define or change an object's property with a script using the set
command.
Objects are arranged in a hierarchy of the following classes in the following order:
stack, background, card, group, control. The hierarchy is significant for two reasons.
First, messages sent as the result of user action are passed up the hierarchy if they
are not handled in scripts at a lower level.
Secondly, properties that govern the colors, patterns, and fonts used to draw an
object are inherited from their owner if not set. This allows you to change the color
scheme of a stack by simply changing the stack colors, rather than having to change
the colors of every object in the stack. If you try to get a property that is inherited,
the MetaTalk constant empty is returned. To find out the attribute actually used in
these cases, use the modifier effective as shown in this example:
get the effective topColor of field 1

There are a number of ways to specify the properties of an object. In most cases the
easiest method is to give the object a unique name and then use that name when you
want to specify a property. For example:
put the rect of button "ButtonName"

In this example, "ButtonName" is a name that was given to the object by the stack
developer (probably with the "Button Properties" dialog).
The second way to specify an object is with the id property. An id is assigned
automatically when an object is created and is guaranteed to be unique within the
stack. An example:
put the loc of button id 1023

The third, and least desirable, method of specifying an object is by using the object's
number property, which is the position of the object relative to other objects of the
same type. Some examples:

 6#204

put the top of button 1

put the left of the first button

put the bottom of any control

put the right of button (5 * variable)

The problem with using this addressing method is that if the objects are rearranged,
the number of an object may change, which will require changing all of the scripts
that refer to that object.

Stacks

Every window MetaCard opens is a stack. This includes even dialog boxes and
menus. Every stack contains one or more cards. The different cards in a stack can be
viewed by navigating through them using one of the four techniques described on the
Intro card of this stack.
Stacks can be opened in one of two ways. The first is to run them directly from a
system command line (by specifying as command line arguments to the "mc"
command), or by using the system file browser. Once MetaCard is running, scripts
can execute MetaTalk commands to open stacks. These commands, like all MetaTalk
commands, are either used in message handlers within scripts or can be executed
directly by typing them into the Message Box. To open the Tools palette (a special
type of stack), for example, you could type the following into the Message Box:
palette "Tools"

You must know a stack's name in order to open it. If you don't know the name of a
stack, and it happens to be the substack of some main stack, you will probably be
able to find its name listed in the "Components" dialog (accessible from the "Stack
Properties" palette) of the Home stack or of one of your mainStacks.
Note that there is a difference between the stack name and the file name the stack is
saved in. Stack names may not only exceed the 14 character name length limit found
on some UNIX systems and the 8.3 limits in MSDOS, but may also include special
characters like spaces, commas, and ampersands (&) that should not be used in file
names. By convention, stack file names should also have a ".mc" extension. When
you choose "Save As..." from the MetaCard File menu, MetaCard will translate your
stack name into an acceptable file name by removing special characters and adding
the .mc extension.
When you want to open a stack but don't know its name, you can substitute the name
of the file for the name of the stack in the command you use to open the stack. This
is not a good general technique, however, because there may be a delay each time
you open the stack using its file name. This is because MetaCard may have to reload
the stack to to verify that it contains a stack that has been opened previously. For the
same reason, it's not a good practice to give the file the same name as the stack stored
in it, because it may cause multiple loads of the stack when objects in the stack are

 7#204

accessed.
When a stack is opened the entire stack is loaded into memory. This includes all
cards, controls, and substacks of that stack. Loading large stacks can therefore take
considerable time and require large amounts of memory. To minimize the impact of
this behavior, it is a good practice to minimize the size of stacks, breaking an
application up into multiple stacks and saving those stacks into separate files if it
grows beyond a certain size (a few MB). Stacks are retained in memory even when
they are closed so that they'll open immediately the next time they are accessed. Set
the destroyStack property of a stack to true if you instead want them to be purged
from memory when they are closed.
Stacks can be opened in different modes. MetaCard has eight different modes:
topLevel, topLevel locked, modeless, palette, modal, pulldown, option, and popup.
Two additional modes, one for cascading (pull-right) menus and one for combo
boxes, are also available, but there are no MetaTalk commands to open stacks in
these modes.
Modes dictate what can and cannot be done to a stack, as well as determine what the
topStack is. Stacks opened from the command line are always opened as
topLevel. Stacks opened with the topLevel command will show the current
card number in their title bar if they have more than 1 card.
If the cantModify property of the stack is set to false, the stack will also have a
"*" in its title bar denoting that the stack can be edited. Editable stacks show the
cursor corresponding to the tool hilited in the Tools palette. Non-editable stacks
always use the "browse" tool so there is no danger that they will be edited
accidentally.

The Home Stack

MetaCard automatically opens the Home stack when you run the "mc" command.
This stack has three purposes. The most important of these is that it serves as the
licensed unit of MetaCard: a special key stored with the Home stack enables the
editing capabilities of the MetaCard engine. The Home stack can also serve as a
directory for other MetaCard stacks. For example, you could put icon buttons in the
Home stack for the stacks you use most often. This allows you to open those stacks
simply by clicking on the icon.

The defaultStack and the topStack

MetaCard enables you to have multiple stacks open at the same time. When this is
the case (which is most of the time) MetaCard needs some way to determine which
stack a given command should be applied to. In these cases MetaCard uses the global
property defaultStack. For example, to find a string in this stack, the following
two commands could be put into a button script.

 8#204

set the defaultStack \

to "Concepts & Techniques"

find "some string"

When the script is executed, the global property defaultStack is set to the stack
containing the object whose script is executing.
When you want a button to perform some operation on an object in another stack, the
button script should set the defaultStack. If the stack name doesn't change, then you
can hard code it as was done in the example above. If however, you want a stack
button to perform some operation on an object in a stack whose name is not known
in advance, the topStack function returns the name of the stack that is opened
with the lowest mode and which was last brought to the top by the user if two or
more stacks have that mode. The mode of a stack is determined by the command
used to open the stack, with topLevel stacks with their cantModify property set
to false having the lowest mode.
Many of the MetaCard dialogs and menus (e.g., the "Save" button in the File menu
and the "Stack Properties" dialog) operate on the topStack. This design makes
common editing procedures simpler, but does have disadvantages. First, if you have
an editable stack open and want to start editing a locked stack (a stack with its
cantModify property set to true), you'll have to either close or lock the editable stack
first.
Second, if you're using a UNIX/X11 system and your window manager is set to
pointer focus policy (as opposed the standard mode of explicit or click-to-type
focus), you'll have a lot of trouble since the topStack changes every time you move
the mouse from one window to another. You will find directions for setting the focus
policy of your window manager back to the recommended "explicit" focus mode in
the MetaCard installation instructions.

mainStacks, substacks, and stackFiles

In addition to containing cards and the groups and controls on them, some stacks
(called mainStacks) contain other stacks (called substacks). Dialog boxes and
menus are commonly stored as substacks of the main application window, which is
typically a mainsStack.
As discussed previously, rather than having to save each stack in a separate file,
substacks are saved into the same file as their mainStack. This allows you to store all
of the stacks that are used in an application in a single file. Note that whenever a
mainStack is saved, so are all of the substacks of that stack. Also, and this is
important, whenever any of the substacks is saved, the mainStack of that substack is
saved, again along with all of the other substacks of that mainStack.
Each mainStack has a file name associated with it which is stored in the stack's
fileName property. The file name is the full path used to load and save that stack.

 9#204

To save a stack into its own file, it must be a mainStack. There are three ways you
can make a substack into a mainStack. The easiest way is just to choose "Save As..."
from the MetaCard File menu. When the "MainStack Option" dialog appears, click
on the "Yes" button. You can also use the "Main Stack" dialog from the "Stack
Properties" dialog to set the mainStack of a stack to itself. Finally, you can make a
stack a mainStack by executing a script that performs the necessary steps. For
example, you could do it by typing the following two commands into the Message
Box:
set the mainStack of stack "my main" \

to "my main"

save stack "my main" as "filename"

If your stack has dialogs or menus associated with it, you'll need to move them into
your new mainStack file so that they become substacks of the new mainStack. You
can do this with the "Main Stack" dialog (from the "Stack Properties" palette) or
using a script command:
set the mainStack of stack "my dialog" \

to "my main"

If you need to go directly to a substack of another mainstack, add an entry to a stack's
stackFiles property that includes the substack name and the name of the file that
that stack is stored in. This technique is used in the MetaCard tools stack (the
mainstack of which is the MetaCard Menu Bar) to go directly to substacks of the
Help Directory stack.
An additional benefit of the main stack/substack architecture is that script handlers
that must be callable from more than one stack can be stored in the script of the
mainStack. These handlers can then be called from the scripts of any of the objects in
any of the substacks. This is possible because messages sent to an object in a
substack pass through that substack's mainStack, and then through the Home stack.
This sharing of handlers is similar to that available via the start and insert
commands, but is more selective because only messages send to substacks go
through the main stack's script.
This message passing architecture means that it's generally not a good idea to put
generic handlers like openStack and openCard in the stack script of a mainStack with
substacks, because these handlers will be run whenever any of the substacks opens or
closes.

Menu Panels

Menu panels are just like any other stack, except that they are opened as
menuName Menus by buttons rather than with a go or topLevel script
command. The buttons in a menu panel must be set up in a certain way, however, in
order to make them behave like Motif compatible menus.

 10#204

The easiest way to create both menu panels and the menu items within them is to set
a button's contents, and to let the button create the menu panel stack automatically
when it is needed.
If you need to put controls in your menu panels that can't be defined with button
contents, you can must create a menu panel as a stack. The easiest way to do this is
to clone one of the menu panels in the MetaCard development environment and then
rename the buttons and rewrite the scripts to do what you need them to. For example,
to clone the menu that pops up when you right click (control-click on the Mac) on a
selected control:
clone stack "MC SelectedObject Menu"

After cloning a stack, you'll want to give it a unique name and then set the
menuName of the button that will be used to open it to that unique name. You'll also
want to edit the buttons in the stack to set their name and script properties. You
can use the "Lay Out Panel" button in the Utilities stack to align and size the menu
buttons after you have created the number of buttons you need.
See the menuName Menus card for information on how to create the button that
will open the menu panel.

Cards

Cards are the simplest MetaCard objects. They have the fewest properties, and
usually the smallest scripts (if they have scripts at all). Cards can contain as many
buttons, graphics, scrollbars, groups and backgrounds as necessary. Double clicking
with the pointer tool on a card will bring up the Card Properties dialog allowing you
to apply new colors, change the font, edit the script, etc.
Of the messages sent to cards, one deserves special mention here: resizeStack.
The resizeStack message is sent to the current card when a stack is opened, and
whenever a stack is resized by the user. It can also be used to implement script-based
Geometry Management (see that card for more details).

Groups and Backgrounds

Each card can have zero or more sets of controls on it. These sets of controls can be
referred to either as backgrounds (the HyperCard and SuperCard compatible way) or
as groups. Backgrounds are accessed in relation to the stack, whereas groups are
accessed in relation to a card. So for example, background 1 is the first group that
was created in a stack, whereas group 1 is the group with the lowest layer on the
current card.
While this architecture can be difficult to understand at first, there are two benefits.
The first is HyperCard compatibility. Many HyperCard, SuperCard, and MetaCard
stacks make extensive use of backgrounds to minimize the duplication of objects.
This is because the same background can be used on multiple cards. The second

 11#204

benefit is the ability to use multiple groups on a single card, something HyperCard
and SuperCard can't do.
There are three ways to create groups and add controls to them. The first is to use the
Edit Backgrounds dialog to create a group and put the stack into
editBackground mode. Any controls added or moved while in edit Background
mode will become part of the new group.
The second way to create and edit groups is to create the controls that will go into
the group first, and then select them by dragging over them or shift-clicking with the
pointer tool and using the group command to group them (e.g., by choosing
"Group" from the "Edit" menu). When you double click on the new group the Group
Properties dialog opens and you can edit its properties or go into
editBackground mode for that group by clicking on the "Edit" button.
The third way is to use the create command to create the group, and then use it
create the individual controls directly into the group.
You can use the "Group" item in the "Edit" menu to group and ungroup controls at
any time, but be sure you remember to regroup a set of controls again if you ungroup
them. If you forget to do this and go to another card that had that group on it, the
group will be permanently removed from that other card. The removal is reversible,
however, since groups can be added to or removed from cards at any time using the
Edit Backgrounds dialog or the MetaTalk place and remove commands.
Note that the layers of the controls within the group is defined by the order in which
you selected the controls prior to grouping them. This is important if you want users
of the stack to be able to use the tab key to move to those controls in a specific order.
Like other controls, groups have a layer property which governs the order in which
they are drawn and the order in which the controls receive the keyboard focus when
the tab key is pressed. It may be difficult to set the layer of a group in some
situations. In these cases, selecting the controls that you want to go on top of the
group and setting their layer properties is an easy way to change the layer of the
group. You can also use the "relayer" button in the Properties palette or the Control
Browser to change the layer of a group.
MetaCard supports nested groups (one group inside of another). The easiest way to
manage nested groups is to stick to a single level of nesting and use edit background
mode to edit the first layer and group and ungroup to edit the controls in the second
level group.
Remember that cards don't have to have any groups (backgrounds) on them. Single
card stacks, such as those used as dialog boxes, frequently don't.

Radio Groups and Traversal

MetaCard groups have built-in support for enforcing radio button behavior (only 1
button at a time is set to on). This behavior is automatic if you create a group that

 12#204

contains only radio buttons. You can set the hilitedButton of a group directly
to a value between 1 and the number of buttons in the group, or the
hilitedButtonName to the name of the button you want hilited.
A related feature of groups is tabGroupBehavior property. Normally each of the
controls on a card are given the keyboard focus in turn when you press the tab key.
Setting the tabGroupBehavior of a group to true causes the group to be tabbed
through, instead of the individual controls within it. The arrow keys are then used to
move the keyboard focus among the controls in the group. According to the Motif
Style Guide, groups of radio buttons and check boxes should have
tabGroupBehavior set to true.

Buttons

MetaCard buttons are multipurpose objects. They can be used to start scripts or to
open Menus. In addition to the standard configurations (set by the radio buttons in
the "Style" group in the "Button Properties" dialog) most of the appearance and
behavior properties can be set independently. See the Buttons card in the Properties
By Object section of the MetaTalk Reference stack for details.
You may find it difficult to determine which properties need to be set to get a button
to look or behave a certain way. In these cases try to find a button somewhere in the
standard interface that does what you need and then copy and paste it. For example
you could execute the following two commands in the Message Box to put a copy
of the "File" button into the current topStack:
copy button "File"\

of stack "MetaCard Menu Bar"

paste

Here are some examples of button properties and how they can be used:
A. Setting the height of a button to 4 makes it look like a menu separator.
B. Setting the autoHilite, showName, traversalOn, and opaque of a
button to false makes it work as a frame which can be placed around other controls,
yet won't respond to keyboard or mouse input.
C. Setting the label property of a button allows you to use a short string for the
button name yet have the button display a long string for the user, making referring
to a button by name in a script easier.
D. Setting the bottomMargin of a button that it is also showing an icon moves the
button label text farther away from the bottom of the button.

Menu Modes

Buttons can be used to open stacks as Menu Panels in one of five different modes:

 13#204

pulldown, cascade, option, comboBox, and popup. In addition, there is a "tabbed"
menuMode that is used to create tabbed/notebook dialogs.
Pulldown menus are the most commonly used type. They are operated by "pulling
down" from a visible button in the stack. Menu panels opened as pulldowns can
contain cascade menu buttons as well. Also known as "pull-right" menus, these
buttons have an arrow indicating that a submenu can be opened by activating the
button.
An option menu, which is also known as a drop-down list box, is used to select one
item from a list of several items. A graphic element (an arrow or rectangle,
depending on the current lookAndFeel setting) is drawn on the right side of the
button to indicate its type to the user.
Popup menus "pop up" wherever the mouse button is depressed. Since there is no
indication that the menu is available, the OSF/Motif Style Guide states that popups
should only be provided in addition to other user interface techniques. Since
experienced users can use keyboard accelerators even faster than they can use
popups, it's a good idea to avoid using popup menus whenever possible.
Tabbed menus can only be created using button contents, and each line in the
contents is used to create one "tab" in the area displayed at the top of the button.

Button Contents Menus

The easiest way to create a menu button is to set the button contents to a list of items
that you would like to appear in a menu, and then set the button's style and
menumode properties to the correct value for the type of menu you want. You
would then put a menuPick message handler in the button's script to respond to the
messages sent when the various menu items are chosen.
For example, you might do the following to set the button contents such that button 1
will display two menu items when it is clicked on:
put "one" & return & "two" into button 1

The button script would then probably have something like the following in it:
on menuPick which

switch which

case "one"

do something for item "one"

break

case "two"

do something for item "two"

break

 14#204

end switch

end menuPick

There are several special characters that you can put at the start of a line in the button
contents to indicate that an item should be something other than a simple rectangle
button:
- makes a divider between groups of menu items
!c makes the menu item a hilited check box
!n makes the menu item an unhilited check box
!r makes the menu item a hilited radio button
!u makes the menu item an unhilited radio button
(makes the menu item disabled
There are two other special characters that can appear anywhere in a line that change
the behavior of that menu item. Putting the & character in a line makes the next
character the mnemonic for the menu item: It will be underlined and activated if that
character is typed with the alt key down while the menu is open. The / character
makes the next character the keyboard accelerator for that menu item: the button will
be activated if that character is typed while the control key is down, even if the menu
is closed. Neither & nor / appear in the actual menu. To put a & or / character in a
menu, double the character (&& or //).
You can build hierarchical (also call pull-right or cascading) menus by putting tab
characters before the name. The depth of the submenus is determined by the number
of tabs before the name, with the anchor item for a submenu being the line prior to an
increase in the number of tabs. This means that the first line cannot contain tabs, and
that any given line can have at most one more tab than the previous line had.
Note that none of the special characters appear in the message sent when a menu
item is selected: The message is same as the item as it appears in the menu, not the
corresponding line in the button contents.
You can change the size of the panel opened by drop-down list and combo box style
buttons with the menuLines property. You can refer to buttons in the current
menuBar using the term menu instead of button, and to individual menu items as
menuItem instead of the term line. You can change the state of the menu items
with the disable, enable, hilite, and unhilite commands. Use the menuHistory
property to determine which menu item was most recently selected in a combo box
or option menu, or to change the label of the button and positioning of the menu that
opens.

menuName Menus

If your menu must have items other than simple rectangles, dividing lines, radio

 15#204

buttons, or check boxes in it, you'll need to create a menu panel as a separate stack.
See the Menu Panels card for instructions on creating and customizing the menu
panel.
After creating a panel, you need to create the button that will open it. Create a button
and set its style to "pulldown" using the properties palette. You'll also need to change
the menuName to the name of your menu panel stack. You should also set the
mnemonic property so the correct letter will be underlined on Windows and UNIX
systems. In most cases this button will not need a script, as the scripts for the menu
items will be in the buttons in the menu panel.
If you need to set up a button manually for your new menu, you will have to change
some of the button's properties from their default values. The autoArm and
armBorder properties make a button's border appear when the mouse is down in
the button. The rightMargin property moves the acceleratorText into the
button's rectangle (or out of it). And the leftMargin property allows you to align
check boxes and radio buttons with buttons of other styles.

Fields

Text fields can be used in a number of ways. Their primary purpose is to display text,
but they can also be used as containers in calculations and to retain information more
permanently than is possible with variables.
For example, if you need to allow your user to edit a field which will later be
restored to its original value, you can use a hidden field as a container of the original
information and a second visible field as the container of the new information. To do
this, first create a field called "editable text" which will accept the data your user
inputs. Then create a field, name it "backup text", edit the contents of that field, and
then hide it (which sets its visible property to false). When you need to restore
your editable field, just put the contents of the hidden field into the editable field as
shown below:
put field "backup text" into field\

"editable text"

Fields can also be used as list boxes (set the listBehavior property of the field
to true). For example, if you wanted to provide a list of files in the current directory
you might put the following hander in the script of the first card in a stack (putting
the command in an openCard handler ensures that the contents are updated every
time that card is opened):
on openCard

put the files into field "FNames"

end openCard
You can also use fields for building hypertext links.

 16#204

When fields are editable (lockText is set to false), clicking in them with mouse
button 1 (usually the left mouse button) sets the text insertion cursor position at the
current mouse cursor location.
Selecting a section of text in one field and then clicking with mouse button 2 (the
middle button) will paste that selected text at the current mouse cursor location in a
field. Clicks with mouse button 3 (the right mouse button) send mouseDown and
mouseUp messages, allowing hypertext jumps using the clickText function even
in unlocked fields.
Setting the backgroundColor, topColor, and bottomColor of a locked
field in a mouseDown handler can be used to make a field simulate a button with the
ability to use multiple fonts and colors for the label. To insure the screen does not
flicker when using a field to emulate a button, use the lock screen and unlock
screen commands to suppress updating the field appearance until all changes have
been made.
Fields, and the text they contain, are easily formatted to meet your needs. The
formattedWidth and formattedHeight properties can be used to determine
the size of text in a field, so that you can resize the field (or even the stack) to make
sure all the text in the field is visible without scrolling. Be sure that you have the
field's dontWrap property set to true to get the width of the text before word
wrapping. You can also use the formattedText property to import and export
text such that the word-wrap locations are preserved.
Setting the autoTab property causes the cursor to advance to the next field when
the return key is pressed in the last line of the field (normally the focus will only
advance to the next control when the tab key is pressed).

Field Keyboard Functions

In the standard keyboard mode, MetaCard fields support the following keyboard
functions:
arrow keys - move the cursor
Ctrl-arrow - move by words
Ctrl-A - select all text
Ctrl-B - backward character
Ctrl-C - copy selected text
Ctrl-D - delete character
Alt-D - delete word
Ctrl-E - end of line
Alt-E - end of sentence

 17#204

Ctrl-K - kill to end of line (cuts text to clipboard)
Ctrl-N - next line
Ctrl-P - previous line
Ctrl-V - paste text
Ctrl-X - cut selected text
Ctrl-Y - yank (paste) killed (or cut) text
Ctrl-Z - undo
When the emacsKeyBindings property is set to true, the following standard
Emacs keyboard functions replace the bindings specified above:
Ctrl-A - beginning of line
Alt-A - beginning of sentence
Ctrl-F - forward character
Ctrl-V - page down
Alt-V - page up
Note that navigation actions can be combined with the Shift key to select a range of
text. You can also use the mouse to select text--drag selects by characters and
double-click drag selects by word.
Some keyboards have keys for copy, cut, paste, and undo. Others have keys for page
up, page down, home and end keys. In most cases these keys can be used in
MetaCard fields.
To put extended (high bit set, e.g., á, æ, â, ö, ©) characters into the buffer, try using
the Character Chooser. On UNIX/X11 systems, it is also possible to type these
characters in by holding down the mod3 key. This modifier may be bound to the Alt
Graph key, the Scroll Lock key, or the Num Lock key. Use the program xmodmap to
see which key is bound to mod3. See your X Windows documentation for how to use
the xmodmap utility to change or add the binding if your system does not support
mod3 in a convenient way.
You can also enter high-bit set characters by quick pasting from another window, or
using the numToChar function:
put numToChar(174) after field 2

Scrollbars

Scrollbars are the least complex of the MetaCard controls. All of their attributes and
behaviors are described in the MetaTalk Reference stack. See the Scrollbar
Properties card in the Properties by Object section of that stack for an index to the
relevant properties. Also see the scrollbarDrag card in the Messages section

 18#204

of the reference stack for a list of the messages that can be sent to scrollbar.

Images

Cards can contain as many images as you like, or none at all. Unlike HyperCard
which limits the user to a single background and a single image (each the size of the
card), MetaCard cards can have multiple images on them, and MetaTalk scripts have
full control over the sizes, positions, and colors used in each image.
Images can be imported in most popular formats, but you should generally use only 2
formats for stacks you plan to distribute: GIF and JPEG. Other formats such as BMP,
PICT, and XWD are not compressed, and using them will result in bloated, poorly
performing applications.
For large projects, you should try to minimize the number of images imported into a
stack. Instead, keep large images in separate files and set the fileName property of
an image object to display that file at a particular place in your stack.
You should also minimize the number of images open at one time, and minimize the
use of large multi-frame GIF files. Buffering these images requires large amounts of
memory. Instead of importing and hiding a large number of images, create a single
image object and use a script to change the fileName property of a that image. You
can also use an image as a container and change its content by putting new data into
it:
put myGIFdata into image "some image"

When you click with a painting tool in a stack that doesn't have an image, an image
the size of the card is created. This image can be sized after it has been created by
clicking on a painted-on area with the pointer tool to select it, and then dragging the
size boxes. Note that when a stack is resized, the image is not resized. You'll have to
resize the image either with the pointer tool, or by setting one of the size properties,
e.g. by typing the following into the Message Box:
set the rect of image 1 \

to the rect of this card

Images can be also be created with the "image" tool (next to the scrollbar in the
Tools palette). Note that only the top most image (the image with the highest layer)
can be edited if multiple images overlap. To edit the other images, you must either
use the hide and show commands to hide the images above it, or set the layer of
the image such that it is above all the other images.

Icons, Patterns, Brushes, & Cursors

MetaCard allows you to use any image object as an icon, fill pattern, brush shape, or
cursor. The image that will be used when each of these properties is set is located by
checking the id of the image objects. Images with ids less than 1000 are reserved for

 19#204

the standard MetaCard icons, cursors, and fill patterns: cursors are ids 1-100, brush
shapes 101-200, fill patterns 136-300. and icons 301-1000. The start value of each of
these is subtracted when you set one of these properties to a value less than 1000.
For example, setting an object's backPattern property to 2 causes the image with id
137 to be used to fill the background of that object.
All stacks and substacks are searched for an image of the correct id when you set one
of these properties. To facilitate finding the right image, you can set the id property
of image objects (they are the only MetaCard objects that allow this). To avoid the
problem where you have multiple objects with the same id, you should only set ids to
very large numbers (at least 6 digits). Note that if you set an id to a value used by
another object in a stack (or another object is created with that id), one or both of the
objects can be lost.
If you intend to distribute sets of custom cursors, patterns, icons, or brush shapes,
contact MetaCard Corporation to reserve a block of ids for you to use to avoid
conflicting with other users' images.
Images for patterns and icons are stored in two places in the standard distribution.
Some are stored in the tools stack (mctools.mc contains the "Icons", "Cursors", and
"Patterns" substacks), some in the Home stack (mchome.mc contains the "my icons"
sub stack). Images stored in the Home stack can be edited by double clicking on the
appropriate buttons in the Icon Chooser (accessed from the stack and button
properties dialogs) and the Pattern Chooser palettes. Since the tools stack is not
normally saved, editing images in this stack requires an extra step.
Note that if available, the tools stack (mctools.mc) or the mini tools (mcmini.mc) will
be loaded when a standalone stack is run. If you don't want to distribute the tools
stack with your stack, you'll need to make copies of the Icons and Cursors stacks
and make them substacks of your stack. If you use icons that you have edited in the
My Icons stack, you'll have to make a copy of that as well. For example, to put a
copy of the "Cursors" stack into your stack use the following command:
clone stack "Cursors"

set the name of stack "Copy of Cursors"\

to "SS Cursors"

set the mainStack of stack "SS Cursors"\

to "standalone stack"

Since many systems won't accept large or odd sized images as cursors (some systems
will only accept 16x16 pixel cursors) or fill patterns, MetaCard applications that
must be portable should stick to smaller images that are multiples of 8 pixels in
width and height.

 20#204

Painting

The painting tools allow you to create and edit bitmap images. The best way to learn
about painting a MetaCard image is by doing. In an unlocked stack (set the
cantModify property to false or use the Stack Properties dialog), try out each of
the tools in the Paint Tools palette. Use the undo menu item in the Edit menu to
undo any messes you make.
You should also try out the Color Chooser and the Pattern Chooser palettes (both
can be opened from the Paint Tools palette). Pressing F1 or the Help key when one
of these palettes has the keyboard focus will bring up help on that palette. If after
painting, you decide you don't want your picture, you can either exit MetaCard
without saving, or type the following into the Message Box:
delete image 1

MetaCard has no text painting tool. Put text in a field underneath an image if you
need to simulate painted text, or use the Importer to take a snapshot of text created
in another application.

Tools

Here are several non-obvious techniques for those who like to paint. On the Mac,
substitute "command" for "control", and control-click for the right mouse button:
1. Polygons created with polygon tool (bottom left of the Tools palette) can be
closed either by clicking on the start point (use a big gridSize to make this easier), or
by double-clicking.
2. Control clicking with the pencil tool brings up the magnifier window. Any of the
painting tools can be used in this window. Control clicking again either in the
window or on the image closes the window.
3. Dragging with the right mouse button using any of the tools erases using the
current tool. Right-click with the bucket tool to erase the background of an imported
image.
4. Double clicking on the brush, eraser, and spray-can tools brings up the Brush
Chooser palette.
5. Holding down the shift key with some tools constrains the angles (try changing the
"slices" field in the Paint Properties palette).
6. Holding down the control key while dragging with some tools draws the border of
the object with the current brushColor (or brushPattern).
7. Holding down the control key when clicking with the dropper tool sets the brush
color instead of the pen color.

 21#204

Graphics

You can create a graphic with any of the filled shapes in the MetaCard Menu Bar or
Tools palettes. Rather than have each object type (e.g. circle, square, polygon, etc.)
have a separate MetaCard control, they are just different styles of the graphic control.
One of the most useful characteristics of the graphic control is that you can set the
points property of the graphic dynamically from a script. See the scripts in the
MetaCard Demo stack and in the MetaTalk Examples for some ideas. Note that when
setting the points property of a graphic, leaving a blank line in the specification
causes a "pen up" action, making it possible to create multiple non-connected line
segments with a single graphic control.
You can optionally draw another series of line segments at each point in the graphic
objects. These shapes are known as markers, and have their own list of points and
colors. See the markerPoints property for more information.
There is no "text" style graphic, but by setting the name or label property of a
graphic to a string, the lineSize to 0, and the showName property to true, you
can make the graphic show just a text string. There is no "line" style either, but you
can set the points of a "polygon" style graphic to a pair of points to draw a single line
segment.

Players

The player control is used to play sound and movie files. Movies are played into the
player's rect, and the player can display a controller bar that works with both sound
and movie files. For sound files that don't require a controller, either set the
showController property to false, or hide the player object.
After creating a player and setting its fileName property to the movie or sound file
to play, you can start it with the start command. To play only a portion of a movie or
sound file, create a selection by setting the startTime and endTime properties, and
set the playSelection property to true.
A playStopped message is automatically sent when the currentTime reaches the
endTime or the duration (whichever comes first), but you can arrange to have
messages sent at other times by setting the player's callbacks property. A
selectionChanged message is sent if the
The player object requires QuickTime 3 or later on MacOS and Windows. It will
operate with limited functionality (AVI and WAV files only) on Windows if
QuickTime is not available.
On UNIX/X11 systems, the player control uses the open source XAnim movie
player. This means that the xanim binary is distributed as a separate executable, and
that executable must be some place on the current $PATH before MetaCard will be
able to play a videoClip. XAnim supports a variety of animation and video formats,

 22#204

including AVI, QuickTime, and MPEG formats, but does not support a controller bar
or selections.

EPS objects

On system with the Display PostScript extension (Sun SPARC Solaris and DEC
Alpha), MetaCard can display PostScript files using the EPS object. Unlike the
graphic control type, this object can't be created with a special tool. Instead the EPS
control is created with the import command (the Importer dialog), or using the
create command. After an EPS object has been created it can be moved and sized
just like other control types.
Three different types of PostScript files can be used with the EPS object. The
primary functional difference is that EPSF and EPSI files contain a BoundingBox
comment that defines the coordinate system used. If you import a plain PostScript
file, you'll probably have to set the BoundingBox coordinates yourself using the EPS
Properties dialog.
You can set the postScript property from within a script, making it possible to
generate graphs dynamically using graphing packages such as gnuplot, for example.
Keep in mind that only the PostScript in EPS files is retained (previews are
discarded), so you'll only be able to view and edit EPS objects on systems that
support the Adobe Display PostScript extension.

AudioClips

AudioClips hold audio data in MetaCard stacks. They are not controls, therefore they
don't have any visual representation. AudioClips are accessed by name with the
play command or created with the import command.
Sounds can be imported in WAV, AIFF or the Sun/Next (.au) format, or from
HyperCard stacks in 8 bit linear format. Note that the Sun/Next 8-bit µlaw (mulaw)
format is the only format supported on all platforms. In most cases, you should use
players to play external sound files instead of importing audio clips because this
reduces memory requirements.

VideoClips

VideoClips are objects used to hold frame-based animation into MetaCard stack
windows. They can be created with the import command which moves the clip into
a stack. Importing is only recommended if being able to distribute fewer files is
worth the performance and size penalties incurred by importing a clip.
VideoClips don't have any visual representation when not playing (they aren't
controls), and are usually only accessed by name with the play command.
Temporary players are created to play back the clip at that point.

 23#204

See the MetaCard FAQ list for more information on playing movies in MetaCard.

Scripting

Each MetaCard object can have a script made up of one or more message or function
handlers. The MetaTalk Reference stack has descriptions of these two types of
handlers, as well as descriptions of the standard messages, and of the commands,
functions, and properties used in handlers.
Scripts are generally written using the Script Editor window which is accessible from
the properties dialog of each object. You can also use the right mouse button to get
to the objects script. The stack script can be opened directly with the shortcut
control-alt-s and the card script with control-alt-c.
You can also edit the script of a particular object by typing something like the
following into the Message Box:
edit the script of field 1

Although scripts can be edited by other scripts, this practice is discouraged. When a
stack is run from the command line (i.e. without a Home stack), there are limits to
the number of statements that can be in a script that is set from the scripting
language. In most cases using the do command is a more straightforward way to
achieve this dynamic behavior.
Be sure to document your scripts while you are writing them. Comments are set off
from MetaTalk statements with either the '#' character or by the sequence '--'. Both of
these cause MetaCard to skip to the end of the line:
put 10 -- this is one comment

get 10 # puts 10 into it

If you need to break very long statements into multiple lines to improve readability,
use the backslash character:
put the name of button 1\

of card 2 of stack "My Stack"\

into somevariable

Terms

MetaTalk programming uses several basic terms: Constant, Literal, Container,
Chunk, Factor, Expression, and Properties and Custom Properties. The most
common use of many of these terms is in the syntax of a command or function in the
MetaTalk Reference.

Container

MetaCard stores text and numbers in "containers" of which there are five types:

 24#204

fields, buttons, images, variables, and urls. Fields not only display text and numbers,
they can allow users to edit this information. Fields are specified either by name or
by number. For example the following commands would have the same result if the
field named "Addresses" is the first field on the current card:
put field 1 into it

put field "Addresses" into it

In general, it is a good practice to give your fields names and to use these names in
scripts rather than the field number, since the number of a field can change (by
setting the layer of another field to a value below it), whereas names won't.
Note that text attributes are not retrieved or saved when you use the field as a
container. For example, if you put line 1 of field 1 into field 2, and the third word of
line 1 has the bold attribute, that attribute will not carry over to field 2. If you must
retain attributes, it may be possible to use the fields' htmlText property to move
text from one field to another, but not all font and style information will be retained
with this method. If all attribute information must be preserved, use the select
command with the cut or copy commands to move text to the clipboard, and then
paste it back into another field:
select text of field "source"

copy

select before char 1 of field "dest"

paste

When buttons are used as containers, the text they contain is usually used to build
Button Contents Menus. They can be also be used as general-purpose containers,
however. Images can be used as containers for binary image data such as images
downloaded from from WWW servers.
Variables can also be used to store values, but they cannot display the information.
Variables are created by either putting something into them, or by using the global
or local keywords. For example all of three of these statements create a variable
called "myVariable":
put 10 into myVariable

local myVariable

global myVariable

The difference among the variables created is that the global statement creates a
variable that is shared between handlers whereas the put command and the local
statement create variables that can only be used within the handler in which they
appear. Note that every handler that uses a global variable must have a global
statement that names the variables. See the local and global commands in the
MetaTalk Reference for more information.

 25#204

Variables with a $ character as the first character in the name are exported to
MetaCard's environment which is inherited by processes started with the shell
function and open process command. You can also get the value of an environment
variable to find the current users log in name ($LOGNAME), home directory
($HOME), and many other current settings. Environment variable names are all caps
by convention, and you don't need to declare them with the global command before
using them.
Any variable can be made into an array of containers indexed with a string or number
by putting the index in brackets. For example, the statement put 10 into
somevar[3] will put the number "10" into element "3" of the variable named
"somevar". Use the keys function to determine which elements of a variable have
values, and the delete command to delete individual elements.
It's a good idea to develop a personalized naming scheme for variables. For example,
you might use the letter "t" as the first character in local variables (e.g. tLocal) and
the letter "g" or name of a stack as a prefix for global variables (e.g. gVariable or
MetaTalkRefGlobal1). There is no practical length restriction on variable names, and
this type of naming scheme should reduce conflicts between scripts in different
stacks that may otherwise try to use the same variable name for different things. It
will also ease the process of upgrading to newer versions of MetaCard which will
include new function and property names that may conflict with your variable names
if you don't use such a naming system.
The final container type is the URL (Uniform Resource Locator). These can be files
on your local system, or files on HTTP servers on your local network or the Internet.
The four forms of the URL are "file:filename", "binfile:filename", "resfile:filename"
and "http://some.machine/somefile". The first three forms access files on your local
system. The "filename" parameter can include a path to the file of the form
"drive:/directory/file". You should always use the URL standard "/" character to
separate the directories in a URL.
put field 1 into url "file:test.txt"

put field 1 into url "file:c:/mc/test.txt"

put line 3 of url "file:test.txt" into field 1

The "file" URL type reads or writes the file in text mode. If you need to do a binary
read or write, use the "binfile" or "resfile" types, the latter of which is only available
on MacOS systems and which accesses the resource fork.
The "http://" form of URLs is used to download documents from WWW servers or to
post documents back to them. You can use the load command to prefetch files
that you'll need later, or just access them directly if you know that the wait won't be
too long:
put url "http://www.some.org/somefile" into field 1

post field 1 \

 26#204

to url "http://www.some.org/cgi-bin/script.mt"

Constant

A constant is a word that is defined in MetaCard to have a particular value. For
example, the value of the constant five is 5. Refer to the Constants section of the
MetaTalk Reference for a list of the predefined constants.

Literal

A literal is like a constant, the difference being that you define what it means.
Literals can be numbers or strings. Literal numbers can be decimal numbers like 123
or real (floating point) numbers like 123.456. If the first two characters in a number
are 0x (as in 0x123), the number is interpreted as hexadecimal (base 16). If the
convertOctals property is set to true, a number with a leading zero will be
interpreted as an octal (base 8) number. Literal numbers can be either quoted or
unquoted.
Literal strings should always be enclosed in quotes. For example the statement:
put "hello" into field 1

will put the word "hello" into the first field on the current card. The following
statement is equivalent:
put hello into field 1

but this way of specifying a literal is not recommended because:
put "four" into field 1

will put the word "four" into the field whereas
put four into field 1

will put the number "4" into the field since the word "four" is a MetaTalk constant.
Unless you know every word in the MetaTalk vocabulary, being lazy about putting
quotes around your literals will eventually result in producing a script that fails to do
what you want. Setting the explicitVariables property to true will cause all unquoted
literals to generate script errors.

Chunk

Chunk expressions are used to retrieve a small piece of text from a larger string. For
example the command:
add 10 to the second word of \

line 3 of field 1

adds 10 to a word (which must be a number) within a field.
There are five types of chunks: line, item, word, token, and character (or char). Line

 27#204

chunks are separated by the return character; items by a comma (but see the
itemDelimiter property); and words by spaces, tabs, or returns. The size of token
chunks is defined by the MetaTalk language interpreter. In general, each continuous
string of numeric or alphanumeric characters is a token, as is each punctuation mark.
When combining chunks of different types, they must be specified in smaller to
larger order in the chunk statement:
char 1 of word 2 of item 3 of line 4

Chunk expressions are an extension of the normal method of specifying an object
which also requires specifying types in "smaller" to "larger" order:
add 5 to line 1 of field "ZIP" of \

card 1 of stack "Addresses"

(the "\" is a script continuation character, use it when a script statement gets too long
for one line).
Chunk expressions can also specify ranges. For example, if field "ZIP" contains the
string "80306", the following statement will add 10 to the number "03", and field
"Zip" will then contain the string "81306":
add 10 to char 2 to 3 of field "ZIP"

Chunks can be specified using negative numbers, in which case the measurement is
taken from the end of the string. For example "char -1" is the last character in a
string, and "word -2" is the second-to-last word.
The number of chunks of a given type in a string can be determined using the
number function. Some examples:
put the number of chars in it

put the number of buttons on card 1

put the number of lines in field "ToDo"

You can also specify chunks using ordinals instead of putting a number after the
chunk type:
the second word of field 1

the last item in it

To choose a chunk at random, use the word "any" as an ordinal:
put any char of it into randomchar

Factor

Factors are values that have no binary operators. Constants, literals, chunks, and
functions all return factors.
There are two situations in which operations are performed on factors rather than

 28#204

whole expressions, and it is important to distinguish between a factor and an
expression in these cases. The first case in which you would need to make that
distinction is with chunk expressions. For example, the chunk expression:
A) put field 1 + 10 into it
will put the contents of field 1, added to the number 10, into the local variable it
rather than the contents of field 11 (since chunk expressions take factors). If you
wanted field 11 rather than field 1 you would use parentheses:
put field (1 + 10) into it

The second situation in which you need to make a distinction between a factor and
an expression is with functions that use of rather than parentheses (known as single
parameter Functions):
B) put the sqrt of 4 + 5 into it
which puts 7 (not 3) into the variable it.

Expression

Expressions are made up of factors connected with binary Operators. See the factor
card for descriptions of when it is important to distinguish a factor from an
expression.

Properties and Custom Properties

All MetaCard objects have properties that you can get and set to change the
appearance, contents, and behavior of the object. There are also many global
properties, which when changed affect all objects in all stacks. For example setting
the cursor property changes the cursor in all open stack windows.
Properties must be set using the set command, but can be retrieved using any type of
expression (the get command can also be used to get the property and put it into the
local variable "it"). In most cases, the important properties are set using a properties
dialog box, but these dialogs just use the same set command your scripts must use.
You can get and set all of the important properties for an object at the same time
using the properties property.
In addition to the predefined properties described in the MetaTalk Reference, you
can attach custom properties to any MetaCard object. Custom properties are usually
used to store information with an object that must be persistent. For example, you
might save version information or a date on a stack to keep a record of when it was
modified. This could also be done by putting information in a hidden field (a
commonly used technique in HyperCard), but using custom properties is more
convenient and makes stacks easier to maintain. You can get a list of the properties
that have been set for an object with its customKeys property.

 29#204

Custom properties are organized into customPropertySets, which are accessed by
setting the customPropertySet property, or by using an array syntax to refer to the
custom property. For example, to access element "myprop" in a custom property set
named "myset", use the expression:
myset[myprop]

You can can copy an entire property set into an array with the customProperties
property. You can get a specific set by requesting it using an array syntax:
get the customProperties[myset] of btn 1

Custom properties can also be used to implement behaviors that are triggered when a
property is set, or to implement "virtual properties" that calculated rather than
actually stored with an object. You can create handlers that are called when custom
properties are set or retrieved using Setprop Handlers and Getprop Handlers.
You can use variables to refer to both standard and custom properties. The following
will put the rect of a stack into the Message Box:
get "rect"

put the it of stack "mystack"

Handlers

Any MetaCard object (stack, card, group, button, menu, field, etc.) can have a script.
Scripts are composed of one or more handlers, one for each of the messages that an
object needs to respond to. Handlers are composed of a series of MetaTalk
statements, each statement ending with a return or semicolon.
Messages not handled by an object are passed up the object hierarchy until a handler
for that message is found. Messages sent to controls in groups pass from the control,
to the group, to the card, to the stack, to the mainStack (if the stack is a substack),
and then to the Home stack. Messages sent to controls on the card are passed from
the control, to the card, to each of the backgrounds (groups) on that card, to the
stack, to the mainStack (if the stack is a substack), and then to the Home stack.
There are two sources of messages. The first is the MetaCard engine, which sends
messages whenever an action is taken by the user. For example, when the user clicks
the mouse button down on a control in a stack, a mouseDown message is sent to that
control.
MetaTalk scripts are the second source of messages. Scripts send messages either
using the send command, or by just putting the handler name where a command
would normally go. This latter method of sending messages is commonly known as
calling a subroutine, and these subroutine calls can be made to handlers within a
script, or to handlers in objects higher in the message-passing hierarchy. Using this
technique you can avoid having to redefine a common series of operations in each
script. Instead, just put a single handler in the script of an object (group, card, or

 30#204

stack) higher in hierarchy.
Each handler can have zero or more parameters. Parameters are just like local
variables except that their value is set before a handler begins execution. For
example, in the following handler the stack is closed only if mouse button 2 is
pressed and then released:
on mouseUp which

if which is 2

then close this stack

end mouseUp

In this case the number of the button the user released is put into the parameter
"which" before the handler is called. If more than one parameter is required they are
separated by commas.
Putting an @ character before the name of a parameter makes it a call-by-reference
parameter, which means assigning a value to that parameter in the subroutine
changes the value of the variable in the calling handler. Note that a variable must be
used in the call to the subroutine when using call by reference parameters (you can't
use an expression on the command line, nor can you pass a field). For example,
setting the script of a button to the following and then clicking on the button will put
"10" into the Message Box:
on setvar @which

put 10 into which

end setvar

on mouseUp

put 1 into somevar

setvar somevar # changes somevar

put somevar # puts "10"

end mouseUp

There are actually four types of handlers: Message Handlers such as the mouseUp
handler shown above, Function Handlers which are used when a handler must
return a value to a calling handler, Setprop Handlers which are called when setting
custom properties, and Getprop Handlers which are called when getting custom
properties.

Message Handlers

Message Handlers are statements beginning with the word on. The handler responds
to the message following the word on -- mouseUp is the most common message --
but you can call a handler by placing the messageName (either a system message or

 31#204

the name of a MetaTalk subroutine) as the first word on a statement line. For
example, the command:
on returnInField

mouseUp

end returnInField

sends the mouseUp message up the hierarchy when the keyboard return key is
pressed and a field has keyboard focus (the flashing bar cursor). You can also use the
send command to send a message to a particular object. For example the following
handler:
on returnKey

send mouseUp to button "OK"

end returnKey

sends the mouseUp message to the button named "OK" when the return key is
pressed if no field has the keyboard focus. This handler is used to implement the
default button in a dialog box, a keyboard shortcut. Be sure to set the default
property on the button you will be sending the message to so that the user will be
able to tell which button will be activated.

Function Handlers

The difference between a function handler and a message handler is that a message
handler is a statement, (it is the first word on a line in a MetaTalk handler), whereas
a function handler is called as part of an expression. Here is an example of a function
handler:
function factorial x

if x <= 1

then return 1

else return x * factorial(x - 1)

end factorial

This handler is a recursive function (it calls itself) for computing factorials. To call
this function you would write something like:
put factorial(5) into somevariable

This statement would call the function factorial, which would call itself 4 times, and
put the resulting number (120) into a variable called somevariable.
A function handler should always have a return statement followed by an expression.
The value of the expression is what is returned to the calling handler.

 32#204

Setprop Handlers

Whenever a custom property is set, a message is sent to the object whose property is
being set. You can write a setprop handler to catch this message and do validation on
the new value of the property before it setting it. For example, if you wanted to make
sure a custom property named "percent" was never set to a negative value, you could
put the following script into the object's script:
setprop percent x

set the percent of me to max(0, x)

end percent

Note that when you set an object's property from within a setprop handler, setprop
messages are not sent. This applies not only to the property being set, but also to any
of that object's other custom properties.
You can also use a setprop property to implement "virtual properties" which are
never really attached to the object but instead are triggers that an object should take
some action. While in most cases this same behavior could be achieved using the
send command, using custom properties makes the communication bi-directional:
values can be returned to a calling handler by implementing Getprop Handlers.

Getprop Handlers

Whenever a custom property is used in an expression, a message is sent to the object
whose property is being retrieved. Handlers for these messages are most often used
to implement "virtual properties", which are properties that are not actually stored
with an object, but are calculated when needed.
For example, if you wanted to be able to easily get the width of any control on a card
as a percentage of the width of its parent object, regardless of whether the control
was in a group or directly on the card, you could put the following handler in the
card script:
getprop percent

return the width of the target * 100\

div the width of the owner of the target

end percent

This handler only needs to be in the card script because like regular messages,
setprop and getprop messages are passed up to the parent object when not handled by
the target object.

Debugging Scripts

If a script or a group of scripts fail to do what you intended, then you'll have to
debug them. In general, spending extra time to write your scripts carefully in the first

 33#204

place will save time in the long run, since debugging can be a very time consuming
process. A well thought-out overall stack design can help too, since many bugs arise
when some scripts depend on other scripts. These kinds bugs tend to be harder to
find and fix because fixing a bug in one script will sometimes cause a different but to
appear in another handler.
Sometimes when a script fails, it will get stuck in an "infinite loop", where the
termination condition of a repeat loop never evaluates to "true". To break out of
these loops on Windows or UNIX systems, press control-. (the control key and the
period key), while a MetaCard window has the keyboard focus. On MacOS systems,
the abort sequence is command-. On UNIX systems, you can also abort a script by
running the command "kill -1 <pid>" where <pid> is the MetaCard process id.
The most commonly used debugging technique is to use the put command to
periodically put debugging information into the Message Box:
put "variable var1 was" && var1

If these debugging messages go by too quickly, a wait command can be put after
each one to delay execution long enough for you to read each message. Another
alternative is to put the text after the previous message in the message box or into a
scrolling field you've created for this purpose:
put var1 & return after \

field 1 of stack "debugger"

More serious problems can be located using the Script Debugger, which can be
opened from the "Tools" menu.

Improving Performance

After you have your scripts working, it may be necessary to fine tune them to make
them run faster. In most cases, you can improve performance merely rearranging the
statement scripts slightly. Here are some ways to do this:
1. Use variables instead of fields as containers whenever possible.
2. Precompute complex expressions. Any value that is referred to in your script more
than once should be precomputed and put into a variable. If this value is needed over
several executions of the script, consider storing it in a global variable or custom
property.
3. Take statements out of loops whenever possible including the termination
condition in an "until" repeat loop. For example, to look at every third line in a field,
instead of:
put 3 into i

repeat until i >= the number of lines\

in field 1

 34#204

do something with line i of field 1

add 3 to i

end repeat

use:
put field 1 into fcontents

put the number of lines in fcontents\

into nlines

put 3 into i

repeat until i >= nlines

do something with line i of fcontents

add 3 to i

end repeat

4. Use repeat for each when looping over chunks. For example, the following
repeat loop will run much faster than the previous one:
put field 1 into fcontents

repeat for each line l in fcontents

do something with variable l

end repeat

5. Put the conditions most likely to match first in switch statements and multiple
if-then-else statements. Similarly, when using if-then with multiple
expressions connected with the and or or operators, put the conditions most likely
to match first when using or, and least likely to match first when using and. The
fewer conditions that must be checked before a match is found, the faster the script
will run.
6. Use associative arrays and custom properties instead of line or item chunk
expressions and the lineOffset function to store and retrieve multiple chunks in
the same container.
7. Refer to remote cards and stacks by name or number instead of going to them
when you need to get a value from another card or stack.
8. Set lockScreen to true when performing more than one operation on the controls
on the same card.
9. Use in-line statements to compute values instead of calling functions. Note that
this may make your scripts harder to maintain, so only use this technique when
performance is an utmost priority.
If implementing these tips doesn't speed up the scripts enough, you may have to use
External Commands and Functions to speed up the execution even more.

 35#204

Geometry Management

When a user resizes a stack, it is frequently desirable for the controls in the stack to
be resized and/or repositioned to make maximum use of the available space. This is
especially important for fields, which can display more text if they are resized larger.
The process of resizing controls in a resizeStack handler is called Geometry
Management (the term is borrowed from the Xt toolkit process with the same goal).
While writing a geometry management script for each dialog can be tedious, at least
it's deterministic. The constraint based approach taken by the Xt toolkits is
frequently incapable of managing complex layouts, requiring a fall back to the
algorithmic approach taken by MetaCard.
The general approach to the problem of horizontal layout is to add up the widths of
the objects, subtract that value from the total width of the stack and divide by the
number of objects + 1. The result is the amount of space between an object and its
neighbors. You should then set the loc of each of the objects to the appropriate
value. The following is the geometry management script used in this stack for you to
use as a template:
on resizeStack

get the rect of this card

add 8 to item 1 of it

add 32 to item 2 of it

subtract 8 from item 3 of it

subtract 48 from item 4 of it

set the rect of field 2 to it

put 0 into item 2 of it

put 32 into item 4 of it

set the rect of field 1 to it

set the right of button 1\

to the width of this stack - 48

set the right of button 2\

to the width of this stack - 12

repeat with i = 1 to the number of buttons

set the bottom of button i\

to the height of this stack - 12

end repeat

end resizeStack

 36#204

See also the scripts in the MetaCard dialogs that have layout and behavior similar to
what you're trying to achieve.
More elaborate geometry managers could use the formattedWidth and
formattedHeight properties to determine the minimum size for buttons and
fields in order to allow resizing of the objects in addition to moving them. These
properties can also be used to resize stacks if all of the text in a field must be visible
when the stack is opened.

Hypermedia

Hypermedia is the technique of linking sounds, images, and text to on-screen objects.
The simplest form is hypertext, the linking of a word or phrase to another word or
phrase. MetaCard's multiple card metaphor makes it easy to develop hypermedia
documents and applications. You can simply place different topics on different cards,
and use the go command to go to a card based on the user's choice.
There are several different ways the user can choose a topic. The easiest way (for the
user, anyway) is to have buttons labeled with the destination. For each button you
might write a script of the form:
on mouseUp

go to card "some topic"

end mouseUp

The disadvantage of this approach is that for some stacks a large number of buttons
would have to be created. You could make this somewhat more efficient by giving
your buttons the same name as the target cards and substituting the short name
of the target for "some topic" in the above example. You would probably
also want to put this handler into a card or stack script do reduce redundancy.
You could put the same type of handler into a field's script, but there is a more
powerful technique. See the Building Hypertext Links card for more details.

Building Hypertext Links

There are several ways to build hypertext links in MetaCard. The easiest is to set the
textStyle of the source text to link and handle the linkClicked message
that will be sent when that text is clicked on. If you need some information other
than what you can derive from the text clicked on, set the linkText property of
that block of text and it will be passed with the linkClicked message instead of
the text that was clicked.
A second method for building hypertext links is the clickText function. This
function returns the text string that a user clicked on. If the text string is the name of
a card, then you can just go to that card. For example:
on mouseUp

 37#204

if the clickText is not empty

then if there is a card the clickText

then go to card the clickText

end mouseUp

It is important to check to see if there is a card with the correct name, so that if the
user clicks on a word that does not have a destination, nothing happens. If your script
doesn't check, an execution error may occur.
If your cards have multi-word names, you will have to group these words together
using the link style (from the Style menu in the Menu Bar). That way, when any
word in the phrase is clicked on, the whole phrase is returned.
There are two other techniques that can be used to implement hypertext links:
indexes and the find command. An index could be kept in a field containing a list
of paired items. For example, the first item would be the words that a user might
click on, and the second item would be the destination card name (or number). To
use the index, use a repeat loop to go through the lines of the index, looking for
the word to match. When a match is found, go to the card specified by the second
item in the index entry.
An index could also be stored as a custom property on a stack or card. The MetaCard
help system uses this technique to link pages in the MetaTalk Reference to relevant
examples in the MetaTalk Examples stack.
The second technique is to use the find command to find the clickText in
another card. A more sophisticated version of this is to have a "keyword" field on
each card that can be specified in the find command. For example, the keyword
field might contain the words that are defined on a given card.

Sound

MetaCard supports a limited form of the HyperTalk play command. In MetaCard,
the play command plays an audio file using the system speaker. See the
AudioClips card for more information on storing sound files inside a stack.
Since the sound plays in the background, it is possible to play sound while
displaying an animation. Though no synchronization is supported (other than the
sound function which can be used to determine if a sound has finished playing), a
little experimentation will usually yield a satisfactory animation/sound combination.
It will be necessary to use vendor supplied programs to record sound although the
external program can of course be run via a MetaTalk script. Note that sound is the
least portable of MetaCard features: many systems don't support sound, nor do most
X terminals or PC X servers.

 38#204

Animation

There are two basic types of animation possible in MetaCard: object based and frame
based. In Object Based Animation, objects are moved around by setting their
location properties or using the drag or move commands. In Frame Based
Animation, the whole scene changes over time. This can be done with the hide and
show commands, using VideoClips, by displaying animated GIF images, or with an
external player.
A fourth type of animation is based on changing the cursor property. This is
usually done to provide feedback to the user about the status of an operation. Two
common uses are changing the cursor in a loop to make waiting more pleasant for the
user, or to provide feedback for a drag-and-drop operation (the cursor changes to
indicate that an object is being dragged).
Keep in mind that each type of animation has its strengths and weaknesses, but one
thing is shared: producing effective animation is a time consuming process, and
should not be attempted on a tight schedule.

Object Based Animation

Object based animation is the easiest and most flexible type of animation. The
simplest example of this type of animation is the setting of an object's position in a
loop:
on mouseUp

repeat with i = 50 to 100

set the loc of button "mover" to i,i

end repeat

end mouseUp

This script moves a button in a diagonal line from point 50,50 to point 100,100. A
more interesting example is to capture points of a path beforehand, and then set the
button position to each of the points in turn, by setting the loc of an object to the
lines in a field in turn:
on gather

wait until the mouse is "down"

repeat while the mouse is "down"

put the mouseLoc & return\

after field "coords"

end repeat

end gather

on playback

 39#204

put number of lines in field "coords"\

into tlines

repeat with i = 1 to tlines - 1

set the loc of button "mover"\

to line i of field "coords"

end repeat

end playback

The problem with this approach is that it is not speed compensated: it will run faster
on some hardware than others. Use the move command when an animation must
play back at the same speed on all hardware.
A final type of object based animation is to set the icon property of buttons within a
matrix to various values. This type of animation is not speed compensated, but does
allow multiple objects to be animated, and allows the object's appearance to change
while it is moving.

Frame Based Animation

The most common type of frame-based animation playback system are video clip
players like QuickTime and Video For Windows (which uses the AVI format). You
can use the play command to play back clips in appropriate formats on all
platforms. On Windows systems, you can use the the mciSendString function to play
back QuickTime movies. See tools.metacard.com for examples.
MetaCard can also play back animated GIF images. Playback starts automatically
when images are opened, but you can control the presentation by setting properties
such as repeatCount and currentFrame of the image object.
The simplest form of frame based animation is to draw an image into one card, clone
the card a few times, alter the image slightly on each card after the first, and play the
animation using the show command (flip book animation):
show 10 cards

If the animation can be slower, visual effects can be used with the go command to
provide transitions between them. If speed is a problem, the images can all be placed
on the same card and the hide and show commands used to flip between them.
Using the lock command to lock the screen may make this even faster.

The Outside World

The mc command accepts any number of command line arguments. MetaCard
attempts to load each of these arguments as stacks, ignoring those that can't be
loaded. You can use this capability to pass command line options to your stacks.
All arguments are available from within the scripting language by prepending a $

 40#204

before the number of the argument, with $0 being the first argument on the command
line. Note that if you load a stack by specifying only the stack's file name on the shell
command line, $0 will be the name of that file.
MetaCard can also access the environment by prepending the environment variable
name with a $. Note that all environment variables must be in upper case letters. For
example, to get the PATH environment variable:
put $PATH

To set it:
put "/bin:/usr/bin" into $PATH

For data interchange with other applications, MetaCard can store and retrieve plain
text from the system clipboard. Cut, copy, and paste all retain attribute information
when moving data from place to place within MetaCard, however.
On X systems, MetaCard also supports "quick paste" for moving text from one
application to another. To paste text from another window into any unlocked
MetaCard field, select the text in the other window and then click with the middle
mouse button at the location where you want the text to go. Text can be copied from
a MetaCard field to another window by selecting the text in the field and clicking
with the middle button in the destination window (but only if the destination
application supports quick paste).

Importing HyperCard and SuperCard stacks

To import a HyperCard stack into MetaCard, first compact the stack in HyperCard to
remove the extraneous data from the stack. Then just open the stack using "Open..."
from the File menu. If you're running MetaCard on a UNIX or Windows system, you
can import stacks in either MacBinary or BinHex formats.
To import a SuperCard project into MetaCard, use the SuperCard to MetaCard
converter. This converter has two components. The exporter component writes out
the SuperCard project to a set of text and image files, which are then used by the
importer component to construct a MetaCard stack. This converter is available on the
MetaCard WWW/FTP sites and via email from support@metacard.com.
After a stack or project has been imported, in most cases some changes will need to
be made to the scripts and object properties to get the stack working properly in
MetaCard. If there are problems compiling scripts, the "script errors" dialog will
open and present you with a list of the objects with script problems. Double clicking
on the items in this list will bring up the script editor and identify the location of the
error.
The following are the most commonly encountered scripting and object display
problems:
1) MetaCard's language compiler is much stricter than HyperCard's and SuperCard's.

 41#204

Using function and property names as variables is the most likely source of
problems. For this reason you should develop a naming scheme where variable
names won't be confused with property and function names. For example, you might
have all global variable names start with a "g", and all local variables have a "t" or
"l" as their first character. The "colorize script" option in the MetaCard Script Editor
can often be used to identify cases where MetaCard's script compiler is interpreting
token names differently than HyperCard's or SuperCard's.
2) The MetaCard script compiler also requires more care in the use of prepositions.
For example, property and function names must always be preceded by the word
"the". Because the word "in" is used in many MetaTalk command structures, it is not
interchangeable with the word "of" like it is in HyperCard.
3) The strictness of the MetaCard script language compiler also affects operation of
the do command and value function. In some cases additional quotes and other
punctuation will need to be added to the strings passed to these commands.
4) MetaCard's cross-platform support for menus is not completely compatible with
either HyperCard's or SuperCard's menu architectures. In most cases commands that
refer to menus will need to be modified.
5) Unlike HyperCard and SuperCard, you can't override standard command and
function names in MetaCard by creating handlers of the same name. Any handlers
that have the same names as built-in MetaCard commands or functions will never be
executed.
6) Because Windows and UNIX systems have different fonts from those used on the
Mac, in some cases buttons and fields will need to be resized, or their fonts changed.
7) MetaCard supports HyperCard-compatible XCMDs, but these are not moved to
the resource fork of a stack when it is imported. You must first save the imported
stack, move the external into the stack using Resedit or some other resource editor,
and then close and reopen the stack. Before you do this, however, check to make sure
that MetaCard doesn't have a feature built in that does what the HC external did
(externals are not portable across platforms and so should be avoided whenever
possible).
8) Because it was designed to work on multitasking OSes, MetaCard's support for
features only appropriate for single-user single-tasking systems like MacOS is
limited. For example, all scripts that have idle, mouseStillDown, or mouseWithin
handlers should be rewritten to eliminate these handlers. In their place, use the send
command, the grab command, or the mouseMove message.
9) MetaCard does not support color add-ons for HyperCard and so commands that
access them will have to be removed from scripts and colors added back in using
MetaCard's integrated color support.
10) MetaCard supports PICT images on MacOS systems, but not cross platform.
Furthermore, PICT (like other OS-specific image formats including BMP and XWD)

 42#204

is a very inefficient storage format for images. PICT images used in HyperCard or
SuperCard applications should be converted to GIF/PNG or JPEG format and then
imported into MetaCard.
For more information on scripting language incompatibilities between HyperCard,
SuperCard, and MetaCard, see the script language guide available in the contrib
directory on the MetaCard FTP sites and via email from support@metacard.com.

open process and shell()

On UNIX systems, the open process command and the shell() function can
be used to run any UNIX command that can be run from the users login shell. The
primary distinction is that the shell() function blocks (it waits) until the
command has finished executing, whereas the open process command returns so
that the external process can continue running in the background while MetaCard
resumes running in the foreground.
MetaCard can send signals to processes started with open process using the kill
command, which operates like the UNIX kill command. These processes can also
send signals back to the MetaCard engine using kill, but only the SIGUSR1 and
SIGUSR2 signals can be caught. These two signals cause a signal message to be
sent to the current defaultStack.
The shell() function can also be used to read or write text using a UNIX
command:
put shell("cat filename") into field 1

See the details of how to use these commands in the MetaTalk Reference.

Import/Export

Images, EPS objects, AudioClips and VideoClips can be imported using the
import commands or the Importer dialog. Images can also be exported with the
export command. See the MetaTalk Reference stack for details on these
commands.
Refer to the cards on the open, read, and write commands in the MetaTalk
Reference stack if you want to save text into a file (in order to print it, for example),
or read it into a field. See also the open process and shell() card for other ways to
import and export text.

External Commands and Functions

The external procedure call interface can be used to access libraries or other 'C' code
from within MetaCard. Calls to external commands and functions look just like calls
to MetaCard handlers, but actually call compiled code in a separate library or
subprocesses.

 43#204

On UNIX systems, communication between the MetaCard engine and the external
process is achieved using X properties. To improve performance and make
debugging external commands easier, an embedded version of the MetaCard engine
is available at extra cost. Embedded MetaCard is a library that you can link directly
to your C applications.
On Windows systems, externals are built as DLLs.
The names of the executable or library to be loaded when a stack is opened are stored
in a stack's externals property. These executables or libraries must be stored
some place on the current PATH environment variable.
On UNIX systems, once externals are started up, the processes continue to run until
the stack window is destroyed (which is when MetaCard exits, or when the window
is closed if the stack's destroyWindow property is set to true). The external
command template files are distributed in a file called external.tar.Z. After the
files are extracted (with the tar xf command, you'll have to uncompress the tar
file first if it has a .Z extension), you must edit the Makefile to set the appropriate
compiler, and include file and library paths. See the README file in that
distribution for more instructions.

Communicating with MetaCard

There are many different ways you can communicate with MetaCard from an
external application on UNIX systems. Here they are in order of preference:
1. If your application can accept command line arguments and has a short run time,
use the shell() function.
2. If it has a longer run time, use open process for neither.
3. If you need to pass information to or from the application, consider open
process for read, write, or update.
4. On UNIX systems, you can also write information to a file with the open and
write commands, and send a signal to the process to tell it to read from the file
with the kill command.
5. On UNIX systems, you can do the reverse by sending a SIGUSR1 or SIGUSR2
signal to MetaCard and catching the signal message.
6. You can start up any process or use any library from External Commands and
Functions.

7. The external interface is bi-directional, so the external can send messages to your
stack. For example on UNIX systems you can use the template XT program to
communicate with MetaCard from a program that uses the Xt/Motif toolkit.

 44#204

MetaTalk as a CGI or batch scripting language

On UNIX systems the MetaCard executable "mc" can be used as a MetaTalk
scripting language to run scripts that do not open windows. The most common use of
this is to develop CGI applications for use with HTTP servers.
The script should start with the line "#!mc" to tell UNIX what interpreter to use to
execute this file. The initial message sent when a script is loaded is the "startup"
message, so your script should contain a handler for that message. In a CGI
application, the input typically comes from stdin, and so that's what you should read
when the script first starts up.
When run directly from a script file the "put" command writes its output to stdout
(since there is no Message Box). This is equivalent to the command "write
<expression> to stdout".
The format of the input that a CGI application receives is very specialized, as is the
requirements for the output that is to be sent back to the WWW browser. See the
examples on the MetaCard WWW site http://www.metacard.com/ for details.

 45#204

Reference Manual

Index B

accept

accept [datagram] connections on port <p> with message <m>
The accept command accepts TCP connections or UDP datagrams from other
systems or processes and creates a new socket that can be used to read or write to
that other process or system. When one arrives, the specified message is sent with a
first parameter that is the IP address of the other end of the socket. If it is a datagram,
a second parameter containing the actual data is also included.
binaryDecode, hostAddress, hostAddressToName, hostName, open, openSockets,
peerAddress, read, wait, waitDepth, write
add

add <expression> to <container>
The add command adds an expression into a container. Both the expression and
the container must have numbers in them. You can verify this with the is operator.
An example:
if field 1 is a number

then add (field 1) * 5 to field 1

This function can also be used to add a scalar to each element in an array or to add
the values in the corresponding elements of two arrays.
combine, divide, median, matrixMultiply, multiply, Operators, put, round, subtract,
transpose, union
answer

answer [<m>] <q> [with <reply> [or <reply> [or <reply>]]] [titled <s>]
answer file <p> [with <def>] [with filter <f>] [of type <t>] [titled <s>]
answer folder <p> [with <def>]
answer printer | color | effect
The answer command opens a modal dialog which asks a user a question specified
by the expression <q> to which they must respond by clicking on buttons specified
by <reply>. The string in the title bar of dialog can optionally be set by including a
string <s> as "titled" parameter, and the icon can be changed by including an
optional <m> parameter, which can be "information", "question", "error", or

 46#204

"warning".
The local variable "it" is set to the name of the button the user clicked on. Note that
as is true for the ask and read commands, the string "it" will be treated as an
unquoted literal until the statement after the answer command.
The "file" and "folder" options open a modal File Selector dialog so that the user can
choose a file or folder. The prompt string <p> is displayed in the dialog or title bar if
the system supports this feature. The <def> is the string that will appear in the
editable field for the file name, and can also contain a full path that will be the
directory the dialog opens to, if the current system supports these features. The filter
<f> causes only those files that match the wild-card expression to be shown. On
MacOS, the filter is a list of one or more 4 character file type specifications, and the
list can be specified with "of type" rather than "with filter". For example to display
both MetaCard stacks and text files, specify "TEXTMSTK". On Windows systems,
the filter option must include a name (shown to the user) and one or more wild card
expressions, separated by returns or commas. If more than one file type must be
included, separate them with a semicolon. For example, to allow selection of
MetaCard stacks or images, use the string "MetaCard Stacks (*.mc),*.mc,Images
(*.gif;*.jpg),*.gif;*.jpg,All Files,*.*". On UNIX systems, the wild card string must
be a single "glob" wildcard expression.
The answer folder command allows the user to select a folder.
The file or folder the user selects with answer file or answer folder is put into the
local variable "it". The delimiter used in the returned path name will always be the
UNIX standard / character instead of the DOS standard \ character or the MacOS
standard : character (any / characters in a file name will be changed to the : character
on MacOS). If the user cancels out of the dialog, the result will contain "Cancel".
The answer printer command opens a modal printer selection dialog on MacOS and
Windows systems. Using it is the only way to set certain printing properties (such as
printRotated) on MacOS systems. See also the open printing command.
answer question "Is this useful?" with "Yes" or "No"

if it is "No" then exit to MetaCard

answer file "Please select a file as input:"\

with "sample.txt" with filter "*.txt"

answer file "save as..." with "/initial/dir/"

The answer color command opens the system color chooser dialog and returns the
RGB value of the color chosen. The answer effect command opens the QuickTime
effects chooser dialog and returns an encoded string that specifies the effect name
and option parameters that can be passed directly to the visual command.
ask, dialogData, directory, dontUseNS, filter, formatForPrinting, go, modal,
modeless, open, palette, platform, print, printRotated, qtEffects, request, send,

 47#204

systemFileSelector, topLevel
ask

ask <question> [with <reply>] [titled <string>]
ask file <prompt> [with <default>] [with filter <filter>]
ask password [clear] <prompt> [with <reply>] [titled <string>]
The ask command opens a modal dialog which asks a user a question specified by
the expression <question> to which they must reply by entering a text string into a
field. The <reply> parameter is an optional suggestion that will appear in the editable
field. The contents of the field are put into the local variable "it" if the user presses
the "OK" button, otherwise the constant empty is returned.
If the word "password" is added, the dialog echoes with the "*" character instead of
the characters typed by the user. If the word "clear" is added, the characters typed by
the user are put into the local variable "it", otherwise an encrypted version is
returned.
"ask file" opens a modal File Selector dialog that allows the user to choose a file to
save to. The <prompt> is an expression that explains what the user is supposed to do.
The <default> is an expression whose value is placed into the field at the bottom of
the dialog as a suggested file name and specifies the initial directory if it contains a
path. The optional <filter> is a string containing wild-cards that is use to reduce the
number of file names displayed as described in the answer command. The delimiter
used in the returned path name will always be the UNIX standard / character instead
of the DOS standard \ character or the MacOS standard : character. If the user
cancels out of the dialog, the result will contain "Cancel".
Since you can build your own dialogs in MetaCard, this command is not as important
as it is in HyperCard. You are encouraged to clone the "Ask Dialog" stack to give it a
more meaningful name and a context-sensitive help button. Open the cloned stack
with the modal command.
ask "What is your name?" with "John Smith"

ask password clear "Enter your personal ID:"

ask file "Please name the text file"\

with "sample.txt" with filter "*.txt"

answer, dialogData, dontUseNS, filter, modal, modeless, open, palette,
systemFileSelector, tempName, topLevel
beep

beep [<expression>]
The beep command causes the system speaker to emit a tone. The <expression>
parameter, which must evaluate to a number, determines the number of beeps. If

 48#204

expression is omitted, one beep is emitted.
beep 2

if alarm then beep 10

beepDuration, beepLoudness, beepPitch, play, sound
breakPoint

breakPoint
The breakPoint command causes the debugger to stop script execution as if a break
point had been set at the statement after the breakPoint command.
If the script debugger is not running, this command has no effect.
ask, answer, do
call

call <handler-name> of <object>
The call command calls a handler in another object's script. The message can be
either one of the predefined Messages, or the name of any other handler in the
script. Any parameters to be passed to the handler should be part of the <handler-
name> string, separated by commas. The whole message should be in quotes, but
note that expressions within the message string are evaluated (see the send
command for details)
Note that when you call a message handler in the script of an object on another card
or another stack, the current context is not changed. So, for example, if a handler in
stack "stack A" calls a handler in the script of an object in stack "stack B", the
expression "field 1" will refer to the first field in stack "stack A". This is the opposite
of the behavior of the send command.
script in button "B1":

on mouseUp which

#if mouse button 1 is clicked, change the color of

button "B2" to red, otherwise to blue

if which is 1 then

call "changeColor red" of button "B2"

else call "changeColor blue" of button "B2"

end mouseUp

script in button "B2":

on changeColor newColor

#change my background color to newColor

 49#204

set the backColor of me to newColor

end changeColor

click, defaultStack, do, drag, go, kill, type, param, pass, send, signal, start,
stacksInUse, topStack, value
cancel

cancel <timer-id>
The cancel command is used to cancel a message put on the pendingMessages
queue with the send command.
pendingMessages, send, wait
choose

choose <tool-name> tool
The choose command sets the active tool for editable windows (those with a * in the
title bar). Other windows always have the "browse" tool in effect. Note that the
chosen tool's action only applies when clicking button 1, so it is possible to have
message handlers respond to mouse clicks with buttons 2 and 3 when using the
"pointer" tool, for example. The valid <tool-names> are:
pointer -- move and size controls

browse -- operate controls

button -- create buttons

field -- create fields

scrollbar -- create scrollbars

image -- create images

graphic -- create graphic objects

player -- create media players

To create different styles of graphic objects, set the style of the templateGraphic
before choosing the graphic tool.
The following tools are for painting on image objects:
select -- select an image area

pencil -- draw fine lines

brush -- paint with a brush

eraser -- erase part of images

spray can -- like brush, but not smooth

bucket -- fill an area

dropper -- pick up a color

 50#204

line -- draw straight lines

oval -- draw circles and ovals

curve -- draw curved lines and areas

reg poly -- draw regular polygons

rectangle -- draw rectangles

polygon -- draw polygons

round rect -- draw rounded rectangles

Note that the HyperCard lasso and text tools are not supported (yet). However, text
can be put into fields, and the selection area used as an image mask, thereby creating
a similar effect as the actions the lasso.
choose pointer tool

choose brush tool

brush, brushColor, brushPattern, centered, cursor, editMenus, filled, flip, grid,
lineSize, lockCursor, lockLoc, modal, modeless, mouseColor, newTool, penColor,
penPattern, polySides, rotate, select, selected, selectionMode, templateGraphic, tool,
topLevel
click

click [button <number>] at <point> [with key [, key2 [, key3]]]
The click command sends a synthetic mouse click to the defaultStack. The button
parameter <number> is an expression that evaluates to an integer. If it is omitted,
button 1 is used. The <key> parameters are chosen from the set {commandKey,
controlKey, optionKey, shiftKey}. The commandKey and controlKey options are the
same on platforms other than MacOS.
The most common use for the click command is creating graphics automatically by
simulating user input to the image editing system. Note that using the send
command to send messages to objects is more efficient, since only one message type
is sent (instead of separate mouseEnter, mouseDown, and mouseUp messages).
commandKey, choose, clickChunk, clickText, defaultStack, drag, find, focus,
mouseDown, mouseLoc, mouseUp, select, send, type
clone

clone <object>
The clone command makes a copy of the specified object. If the object specified is a
control, it will be placed on the card slightly offset from the original. If the object is a
card, the new card will share the groups of the specified card and will have copies of
all controls used on the source card. If the object is a stack, the stack will be an exact
duplicate of the original, and will be opened for editing.

 51#204

After an object is created, a message is sent that can be used to prepare the
environment to operate on the new object. For example, when a button is created, a
newButton message is sent. The local variable "it" will also contain the long id of
the newly created object.
Dragging a control with the control key held down, will clone the dragged object
(choose pointer tool first). Note that state information (hilited, armed, selected,
etc.) is not preserved when an object is cloned.
clone this card

clone button 1

backgroundBehavior, copy, cut, create, delete, get, paste, place, remove, select, undo
close

close <stack>
close file <filename>
close process <filename>
close printing
close socket <s>
The close <stackname> command will close a stack that was opened with the go,
topLevel, modal or modeless commands. The close command can also be used to
close a file or process opened with the open command.
Note that processes open for mode "neither" don't have to be closed: they exit
automatically. You may not be able to immediately start up another process of the
same name after closing a process, since MetaCard waits until the previous process
has exited before freeing the name for reuse. If you know the process will exit, you
can wait for it. Otherwise, you may need to use the kill command.
open process "sh"

do some reads and writes to the shell

close process "sh"

repeat with i = 1 to 100

if "sh" is not in the openProcesses

then exit repeat

wait 1

end repeat

now you can start up another copy of "sh"

The command "close printing" can be used to stop batching printed cards and send
the job to the printer.

 52#204

close file "testfile"

close this stack

close stack "myStack"

The "close socket" command is used to close a socket.
clone, closeStack, create, delete, go, kill, modal, modeless, open, openProcesses,
openSockets, option, palette, popup, print, pulldown, revert, serialControlString,
topLevel
combine

combine <var> using <pd> [and <sd>]
This command combines the elements of an array variable <var> into a single string
using the delimiter <pd>. If the array is string indexed instead of numerically
indexed, you can also specify an optional second delimiter <sd> which will be used
to concatenate the index and the value of each element.
add, extents, intersect(C), split, transpose, union
compact

compact stack <stackname>
The compact command removes empty space from within a stack that wasn't freed
when cards are deleted or rearranged with cut/copy/paste. Note that the standard
interface does a compact before saving, so this command is only useful when writing
scripts that will have a large number of cards repeatedly created and deleted in one
MetaCard session.
compact this stack

compact stack "myStack"

clone, create, delete, go, kill, save, open, topLevel
constant

constant <name = value> [,<name = value>, ...]
You can declare your own constant values with the constant command. These values
are similar to initialized variables declared with the local command, but an error
occurs if you try to change their values.
Constants, explicitVariables, global, local, localNames, put, variableNames
convert

convert <container> to <format> [and <format>]
The convert command converts the text in a field or variable from one date/time form
to another. <format> is either "time" or "date", possibly modified by the words

 53#204

"abbreviated", "short", or "long". <format> can also be "dateItems" which is a
comma separated list of date elements in the order year, month, day, hour, minute,
second, day of week.
Be sure to check that the container contains a valid date by using the "is" operator.
if field 1 is a date then

convert field 1 to seconds

add 30000 to field 1

convert field 1 to long date

end if

convert "7/1/93" to long date

convert the date && long time to dateItems

convert 926671399454 to short time

centuryCutoff, charToNum, date, find, send, sort, seconds, time, Operators,
twelveHourTime, useSystemDate
copy

copy
copy <object> [to <dest>]
The copy command copies either the currently selected text, image selection, or the
object specified by <object> to the clipboard, or to the group, card, or stack specified
by <dest>:
copy button "B1"

copy field 1 to stack "backup"

copy the selObj #copy the selected object

After an object is created, a message is sent that can be used to prepare the
environment to operate on the new object. For example, when a button is created, a
newButton message is sent. The local variable "it" will also contain the long id of
the newly created object.
copyResource, clipboard, clone, commandKeyDown, copyKey, create, cut, get,
delete, paste, place, put, rawKeyDown, remove, select, selectedChunk,
selectedObject, selection, undo
create

create [invisible] <object-type> [<name>] [in group <groupname>]
create stack <name> with <background>
create directory <dirname>

 54#204

create alias <a> to file <f>
The create command creates an object of type <object-type>. If <object-type> is a
control, it will be placed on the current card. If it is a card, it will be placed in the
defaultStack and opened. Note that when a card is created, the groups on the current
card will be placed onto the new card.
After an object is created, a message is sent that can be used to prepare the
environment to operate on the new object. For example, when a button is created, a
newButton message is sent. The local variable "it" will also contain the long id of
the newly created object.
The optional [invisible] parameter creates the object with its visible property set to
false. The optional <name> parameter can be used to give the new object a name.
The optional "in group <groupname>" clause can be use to create a control that will
be contained by that group.
When creating a stack, you can specify a background expression that will be copied
into the new stack (note however that it's usually easier to use the clone command to
just clone the whole stack):
create stack "test" with this background

Each object type has a template that is used for creating objects of that type. If you
want to change the properties of an object before it is created, set the property in the
template first (be sure to set it back, or to check the current settings before creating
your next object).
set the style of the templateButton to "radio"

create button "B1"

create field "newField"

After controls are created, a message is sent that can be used to prepare the
environment to operate on the new control. For example, when a button is created, a
newButton message is sent that is handled in the Home stack, which chooses the
pointer tool. The local variable "it" will also contain the long id of the newly created
object.
Create can also be used to create a directory (or a folder on MacOS). Specifying a
full path creates that directory. Otherwise, the file is created as a subdirectory of the
current directory. The delimiter used in the path name should always be the UNIX
standard / character instead of the DOS standard \ character or MacOS standard :
character. If you need to create a / character in a file name on MacOS, use a : in the
path where the / should appear in the file name.
The create alias command creates an alias (known as a "shortcut" on Win32 systems
and a "symbolic link" on UNIX systems) named <a> to an existing file <f>.
To create a file, use the open command.

 55#204

aliasReference, backgroundBehavior, clone, copy, cut, delete, hide, paste, place,
remove, rename, reset, select, show, templateButton, templateCard, templateField,
templateImage, templateScrollbar, templateStack, tempName, tool, umask, undo
cut

cut
cut <object>
The cut command copies either the currently selected text, image selection, or the
object specified by <object> to the clipboard.
cut field "newField" of stack "myStack"

cut button "B1"

cut the selObj #cut the selected object

clipboard, clone, commandKeyDown, copy, create, delete, paste, place, put,
rawKeyDown, remove, select, selectedChunk, selectedObject, selection, undo
define

define <prop> of <object>
The define command is provided for OMO compatibility and is non-functional.
set, undefine
delete

delete
delete <object>
delete local | global <variable>
delete file | directory <name>
With no paramters, the delete command deletes either the currently selected text or
image selection. If an <object> is supplied, it deletes that object:
delete button "B1" of stack "myStack"

delete field "newField"

delete the selObj

Delete can also be used to delete local and global variables, which will free the
memory used by those variables and in the case of array variables delete an index
from the keys of that variable:
delete global myglobal

delete local myarray["some index"]

Delete can also be used to delete files and directories:

 56#204

delete file "/tmp/tmpfile"

delete directory "/tmp/tmpdir"

clone, copy, create, customProperties, cut, decompress, deleteKey, deleteResource,
open, paste, place, remove, rename, select, selectedChunk, selectedObject, selection,
tempName, umask, undo
disable

disable <object>
The disable command disables a control so that it will no longer respond to mouse
clicks or receive keyboard or mouse messages.
disable button "B1" of stack "myStack"

disable the selObj #disable selected object

autoHilite, cantSelect, default, disabled, disabledIcon, enable, hide, hilited, ink,
traversalOn, unhilite
divide

divide <container> by <expression>
The divide command divides the value of a container by an expression. Both the
expression and the container must have numbers in them. You can verify this with
the is operator, for example:
if field 1 is a number

then divide (field 1) * 5 by field 1

divide totalScore by numberOfPlayers

This function can also be used to divide each element in an array by a scalar or to
divide the values in the corresponding elements of two arrays.
add, multiply, numberFormat, Operators, put, round, subtract, trunc
do

do <expression> [as <language>]
The do command executes a list of one or more statements specified by
<expression>. The statements can include any statement that could appear in a
handler. For example, the MetaCard Message Box uses the do command to execute
commands typed into it.
While the do command is very powerful and can be used to save dozens or even
hundreds of ordinary script statements, keep in mind that that executing a statement
using do takes up to 30 times as long as executing the same statement in a regular
script. This is because each statement must be compiled before it can be executed,
and unlike normal statements which are only compiled once, statements executed

 57#204

with do must be recompiled each time they are executed.
The script executed by do has access to all of the variables declared in the current
handler, but cannot create new variables. Use the local command to create any new
variables that the script will need.
get "put" && quote & "hello" & quote

do it

do "put 3+5 into field 2"

put "showBorder" into pname

put "false" into pvalue

put "field 1" into ptarget

do "set the" && pname && "of" && ptarget\

&& "to" && pvalue

The optional <language> parameter, which is only available on MacOS, executes the
statements using an OSA extension which must be installed on the current system.
alternateLanguages, call, constant, Constants, get, global, local, lockErrorDialogs,
merge, param, request, script, scriptLimits, send, value
doMenu

doMenu <expression>
The doMenu command is provided for compatibility with HyperCard. All of the
functionality accessible with the HyperCard doMenu command have equivalent
commands in MetaCard, therefore use of doMenu is discouraged.
cut, copy, create, delete, do, hcStack, paste, quit
drag

drag [button <n>] from <start> to <finish> [with key [, key2 [, key3]]]
The drag command sends synthetic mouse down, move, and up events to the
defaultStack. It should only be used to create shapes using the painting tools, and
not to create controls or move them around. Instead, use the move command, or set
the points property of a graphic object.
The button parameter <n> is an expression that evaluates to an integer that
determines which mouse button is simulated. Mouse button 1 is used if the button
number is not specified. The <start> and <finish> parameters are expressions that
evaluate to x,y points. The key parameters are chosen from the set of {commandKey,
optionKey, shiftKey}.
Note that the create and clone commands are more efficient for creating controls,
and that the send command is a more efficient way to call event handlers. Moving a

 58#204

control is most efficiently done by setting its loc property or by using the move
command.
choose pointer tool

set the dragSpeed to 10

#drag button 1 to location (725,256)

drag from the loc of button 1 to 725,256

choose, click, clone, create, dragSpeed, grab, paintCompression, select, send, set,
type
edit

edit [the] script of <object>
The edit command brings up the MetaCard script editor with the script of the object
specified. It is used primarily as a shortcut typed into the Message Box to avoid
having to go through intermediate dialog boxes.
edit the script of button 1

editScript, script, scriptTextFont
enable

enable <object>
The enable command enables a control so that it will respond to mouse and keyboard
events.
if the disabled of button 1

then enable button 1

enable field "myField"

disable, disabled, enabled, mouseUp
export

export paint | png | jpeg to file <iname> [with mask <mname>]
The export paint command writes the currently selected image to a disk file in the
Portable Bitmap Format. For more information on the PBM format, find the
PBMplus or NetPBM image-processing / file-format-conversion packages on the
Internet, read the Usenet news group alt.graphics.pixutils, or email a support request
to your support contact. Most commercial image conversion packages also have
PBM support. The png and jpeg options export the file in those other formats.
The <iname> and optional <mname> parameters are expressions that evaluate to file
names.
export paint to file "myFile"

 59#204

export png to file "myfile.png"

fileName, import, open, read, text
filter

filter <container> with <expression>
The filter command can be used to perform wild card matching of the lines in a
container. The special characters supported are the same as those used by the Bourne
shell. For example, "mc*" will match all lines where the first two characters are 'm'
and 'c'. The string "[a-c]?" will match all lines with two characters where the first
character is 'a', 'b' or 'c'. For example, to filter a directory entry to show only the 'C'
source files:
put the files into flist

filter flist with "*.c"

put flist into field "C files"

The matchText function offers more advanced capabilities, but must be applied to
each line separately.
answer, ask, caseSensitive, directories, files, fileType, format, matchChunk,
matchText, open, put, replace, sort
find

find [<type>] <expression> [in field <field>]
The find command searches through each text field on each card in the defaultStack
until it finds the search string specified in expression. The <type> specifies the
characteristics of the matching process. If it is omitted, the find command matches
the beginnings of words in <expression> with the beginnings of words in fields.
The other possible values of <type> are chars (which matches characters anywhere in
words), string (which matches a string exactly, including spaces), whole (which
matches the begin and end of a string of words), and word (which matches only
complete words, but multiple words don't have to be sequential to be matched).
If you only want to search a given field of each card (which will make the search go
faster), you can specify this field by name, id, or number. Note that only the field part
of the chunk expression is used: including a card or stack name in the expression will
make the find fail to work properly. Set the defaultStack to the name of the stack
you want to search if it isn't the current stack. If nothing is found, the result function
will return the phrase not found, otherwise it will return empty.
Note that there is a Find stack that makes it easier to use the find command by
allowing you to select the stack to search in, and to choose options by pressing
buttons.
In most cases, using the offset or matchText functions will locate text faster than

 60#204

the find command, but these functions only work on a single container at a time.
find "Bill"

find string "o sea" #finds "to search"

find "visual" in field 1

on replace old, new

set the caseSensitive to true #caseSensitive find

repeat

find string old #exact string match

if the result is not empty

then exit replace #done

do "put new into" && the foundChunk

end repeat

end replace

caseSensitive, click, defaultStack, dontSearch, foundChunk, foundField, foundLine,
foundLoc, foundText, lock, lockScreen, matchText, offset, put, replace, result, select,
sort, visual
flip

flip [image <i>] horizontal | vertical
This command flips a image selection either horizontally or vertically. The optional
<i> parameter will select and then flip that entire image.
choose, rotate, select
focus

focus [on] <object>
The focus command moves the keyboard focus to the specified object. For fields, it's
similar to the command "select after field x" except that it doesn't change the
position of the insertion cursor.
focusIn, focusedObject, rawKeyDown, select, showFocusBorder, type
get

get <expression>
The get command is a shorthand way of writing:
put <expression> into it

The variable it is a local variable use for this command and for the clone, copy,
create, read, and paste commands. The get command is used most frequently with

 61#204

properties, since it is the complement of the set command.
get "Hi"

get field 1

get nameList

get the visible of button 1

The get command is also often used with URLs, though they can be used as
containers in any expression:
get url "http://www.metacard.com/"
do, httpHeaders, post, propertyNames, put, read, replace, set, Properties by Name
global

global <variable-name> [, <variable-name>]
The global command creates a global variable (if it does not already exist) and makes
it available for use in the current handler. The global declaration must appear in
every handler that uses it or the variable will actually be a local variable.
The global command can be used within a handler but can also be used outside all
handlers (such as at the top of a script) in which case the variables created can be
used in any handler within the script. Any number of variables, separated by
commas, can be placed on the command line.
It is a good idea to prepend a stack name or some other prefix to the name when
declaring a global to prevent accidental reuse of a variable name in another stack or
as a local variable. For example, a variable in the MetaTalk Reference might be
named MRvar1, or gVar1.
on initGlobal

global gcount #create global variable

put 10 into gcount #initialize to 10

halfGlobal #changes value

put gcount #puts 5

end initGlobal

on halfGlobal

global gcount #gcount is 10

divide gcount by 2 #gcount is now 5

end halfGlobal

constant, container, explicitVariables, globalNames, local, localNames, put,
variableNames
go

 62#204

go [to] [invisible] <stack> [as <mode>] [in window <wid>]
go [to] <card> [of stack <name> [as <mode>]]
go back | forth | forward [<count>]
go start | finish | home
The go command opens the specified card of the specified stack. Visual effects
specified with the visual commands are executed if the destination is a card within
the current stack. <card> can be either the name or the number of a card, or an
ordinal specification such as next card, first card, recent card,
any card or last card. The word marked can be inserted to only go to those
cards that have been marked (using the mark command, for example.
The optional modifier "invisible" can be used to open a stack invisible directly
without having to set its visible property first.
The <mode> parameter is the mode of the stack that is opened and should be one of:
modal, modeless, palette, or topLevel. If it is omitted, the stack is opened as
topLevel unless the stack's style property has been set. To open a stack as an option,
popup, or pulldown menu, set the menuName and menuMode properties of a
button instead of using the go command.
The <wid> parameter can be either the name or the windowId of a stack that the new
stack should open into instead of opening a new window.
The backward and forward options can be used to move through the cards on the
recent list. For example, the command go back 1 has the same effect as go
recent.
visual effect dissolve

go to next card

go to stack "y" in window of stack "y"

go marked card 2

go last #same as "go to last card"

alwaysBuffer, clone, close, create, delete, dynamicPaths, lock, lockRecent, mark,
modal, mode, modeless, navigationArrows, number, open, option, palette, pop,
popup, post, pulldown, push, recentNames, save, send, style, topLevel, unlock,
unmark, visual, windowBoundingRect
grab

grab <object>
This command causes the control that was clicked to track the mouse until the mouse
button is let up. You should only call grab in a mouseDown handler, and should
consider using the mouseMove message instead because it's much more flexible:

 63#204

on mouseDown

grab me

end mouseDown

choose, click, drag, grab, loc, mouseDown, moveControl, moveSpeed, moveStopped,
move, movingControls, play, select, send, set, type, visual
group

group [<c>]
The group command makes a set of selected controls into a group/background. If a
list of controls <c> is supplied, those controls will be added to the new group.
group button 1 and field 2

copy, cut, delete, editBackground, go, paste, place, remove, start, ungroup
hide

hide <object> [with visual effect <effect>]
hide menubar
The hide command sets the visible property of the specified object to false. Hiding
stacks does not close them, it just unmaps their windows. Resources held by the
stacks (including Externals and colors) will continue to be held until the stack is
closed. Hide can also be used on MacOS systems to hide the system menubar.
When showing an object, an optional visual effect can be supplied that will be
executed as the object is shown.
hide field 3 with visual effect dissolve

alwaysBuffer, bufferHiddenImages, cantSelect, create, dontDither, invisible,
menubar, move, show, showInvisibles, textStyle, visible, visual
hilite

hilite <button>
This command sets the hilited property of a button specified by <button> to true.
disable, enable, default, hilited, unhilite
import

import <format> from file <iname> [with mask <mname>]
import snapshot [from rect <rect> [of window <windowID>]]
The import command reads an image from a disk file. The <format> parameter is one
of paint, audioClip, EPS, or videoClip. The paint format will import
images in GIF, JPEG, PNG, BMP, XWD, XBM, XPM, or the Portable Bitmap

 64#204

(PBM) format.
The <iname> parameter is an expression that evaluates to a file name. The <mname>
is an expression that evaluates to a file name where a mask (a one bit image) is
stored. Be sure to put the file name in quotes. Note that when importing masks, both
the image and the mask must be in PBM format.
The import snapshot command puts MetaCard in snapshot taking mode. The cursor
changes, and an image of the window (or area) the user selects will be imported into
the current defaultStack. If the optional <rect> and/or <window> parameters are
supplied, the specified area of the window or screen are grabbed as an image.
Importing audioClips and videoClips is done primarily to simplify distribution of
stacks, since only the stack needs to be sent out. It may also improve playback
performance in some cases (importing clips during delays in the presentation is an
important technique for CD-ROM based stacks, for example). Importing clips does
increase memory usage, however, and so should not be done indiscriminately.
import paint from file "picture" with mask "pmask"

import audioClip from file "music"

import videoClip from file "movie"

boundingBox, export, fileName, open, play, prepare, read, screenGamma, windowId
insert

insert [the] script of <object> into front | back
The insert command is used to insert an object's script into the message passing
hierarchy. Inserting an object's script into the front causes all messages to be passed
through that script before they are sent to the original target. Inserting a script into
the back causes messages to be passed to that script after all other objects in the
hierarchy have had a chance to handle the message.
Inserting a script into the message passing hierarchy can be used to get around the
64K script size limitation, and can be useful for building certain types of editors. It
does, however, make it more difficult to understand and predict how a stack will
behave.
There is no limit to the number of scripts that can be inserted into the front or back
during development with a licensed Home stack, but the scriptLimits apply
otherwise.
backScripts, frontScripts, remove, script, scriptLimits, stacksInUse, start
intersect(C)

intersect <a1> with <a2>
This command computes the intersection of the elements in array <a1> with the
elements in <a2>. The result is stored in <a1>. Note that the values for each element

 65#204

come from array <a1> even if they differ from the values in the corresponding
elements of array <a2>.
combine, extents, intersect, split, union
kill

kill [signal number] process <process-name>
The kill command is used on UNIX to send a signal to another process, for example
one created with open process. The signal number can be either a number, or one of
the signal names defined in /usr/include/sys/signal.h, leaving off the initial "SIG".
For example, to send a SIGUSR1 to a process:
kill USR1 process "some process"

If the signal number is omitted, SIGTERM is sent.
You may not be able to start up another process of the same name immediately after
killing a process, since MetaCard waits until the previous process has exited before
freeing the name for reuse. If you know the process will exit, you can wait for it
using the script given on the close card.
close, externals, launch, open, openProcesses, openProcessIds, platform, processId,
send, signal, sysError
launch

launch [<document> with] <application>
The launch command starts up another application. The optional <document>
parameter will cause the application to open that document. With no document
specified, launch is a synonym for open process <application> for
neither

hideConsoleWindows, kill, open, shell
load

load [url] <url> [with message <message>]
This command downloads the file specified by <url> into a local cache. The file can
then be used in a url expression, or with the go, play, or set commands. Note that
you don't have to load urls before using them. The load command just provides a
way to download them in the background rather than having the script wait for the
complete download before continuing.
The current status of a downloading URL can be queried with the urlStatus
function, or the optional <message> parameter can be supplied which will cause that
message to be sent when the download is complete.
Be sure to unload the URLs when you're finished with them to free up the system
resources required to keep them in the cache. You must do this even if the download

 66#204

fails for some reason.
cachedUrls, close, create, decompress, delete, go, httpProxy, kill, play, post, open,
shell(), send, set, unload, urlStatus
local

local <variable-name> [= <val>] [, <variable-name>]
The local command creates local variables (if they do not already exist) and makes
them available for use in the current handler. Any number of variables, separated by
commas, can be placed on the line. The local command can be used in a handler, in
which case the new variable has scope only within that handler (that is, it can only be
used within that handler). Locals can also be declared outside all handlers, such as at
the top of the script, in which case the variables created can be used in any handler in
the script.
local newValue

on thisLocal

put 5 into newValue

put 5 into count #count is local to "thisLocal"

otherLocal #handler changes newValue

#display "count=5 newValue=30" in Message Box

put "count=" & count && "newValue=" & newValue

end thisLocal

on otherLocal

put 20 into count #local count is 20

put 30 into newValue #newValue is now 30

end otherLocal

You can initialize the value of a local variable when declaring it with the following
syntax:
local l1 = 3, l2 = 4

constant, explicitVariables, global, localNames, put, variableNames
lock

lock colormap | error dialogs | menus | messages | moves | recent | screen
The lock command sets a global property to true. Locking the colormap prevents
objects from changing the current CLUT, which would cause a complete screen
redraw on MacOS systems. Locking menus prevents system menu structures from
being updated. Locking messages prevents messages from being delivered to
handlers. Locking moves stops all objects set into motion with the move command.

 67#204

Locking recent prevents cards shown with the go and show commands from being
added to the list of recentCards. Locking the screen prevents objects from
redrawing themselves when they are moved or sized or changed in any other way.
Locking the screen may drastically improve performance when doing geometry
management in a resizeStack message handler. All locks are removed when all
pending handlers have finished execution. Still, it is a good idea to unlock when you
no longer need the property locked.
An example using lock error dialogs (but see the try control structure for a better way
to handle errors):
on mouseUp

lock error dialogs

someHandler

#if there's an error, it will trigger the

#errorDialog handler instead of putting up the

#standard error dialog box

end mouseUp

on errorDialog

answer "Script error occurred. Please try again"

end errorDialog

An example using lock screen and messages:
on mouseUp

lock screen # prevent stack flashing

lock messages # prevent message delivery

go to card 3 of stack "userPassword"

#do something.....

unlock screen

unlock messages

end mouseUp

allowInterrupts, executionError, go, lockColormap, lockErrorDialogs, lockMenus,
lockMessages, lockMoves, lockRecent, lockScreen, recentCards, recentNames,
resizeStack, scriptError, try, unlock, visual
mark

mark all cards
mark <card>
mark cards where <expression>

 68#204

mark cards by finding <expression> [in <field>]
The mark command sets the mark(P) property of a card based on the results of a text
search or an expression evaluation. For example, to mark all cards in an address
book that have a telephone number in Nevada do one of the following:
mark cards where field "Phone" contains "702"

mark cards by finding "702" in field "Phone"

You can also mark specific cards:
mark this card

mark card "index"

After the cards have been marked they can be viewed by putting the word "marked"
into a go command, or printed:
go to next marked card

print marked cards

convert, do, find, go, mark(P), print, sort, unmark, value
modal

modal <expression>
The modal command opens up a stack name specified by an expression as a modal
dialog box. Any input to any topLevel windows is disabled while the modal dialog
is open. Modeless and palette windows and other application windows can still be
used, however. Note that statements following the modal command will not be
executed until the modal dialog is closed. If information must be returned to the
handler that executed the modal command, set a custom property on the stack and
check that value after the modal command:
on mouseUp

modal "some stack"

if the retval of stack "some stack" is "OK"

then put "works like it's supposed to"

end mouseUp

In script of "OK" button of stack "some stack":
on mouseUp

set the retval of this stack to "OK"

close this stack

end mouseUp

In script of "Cancel" button of stack "some stack":

 69#204

on mouseUp

set the retval of this stack to "Cancel"

close this stack

end mouseUp

Dialogs opened with the modal command always use the browse tool, so it is not
necessary to choose another tool. In order to provide the user with maximum
flexibility, modeless dialogs should be used whenever possible.
answer, ask, cantModify, clone, close, create, delete, dialogData, go, modeless, open,
option, palette, popup, pulldown, resizable, show, topLevel, wait
modeless

modeless <expression>
The modeless command opens up a stack name specified by an expression as a
modeless dialog box. Modeless dialogs allow interaction with all other modeless and
palette windows and other application windows. They are similar to topLevel
windows and palette windows, but can be resized (if the resizable property is true),
but cannot be edited or iconified separately.
Dialogs opened with the modeless command always use the browse tool, so it is not
necessary to choose another tool. In order to provide the user with maximum
flexibility, modeless dialogs and palette windows should be used instead of modal
dialogs whenever possible.
modeless "myStack"

answer, ask, cantModify, clone, close, create, delete, go, modal, open, palette,
resizable, show, topLevel, wait
move

move <obj> [from <s>] to <p> [in <t>] [without messages | waiting]
move <obj> rel[ative] <displacement>
The move command moves an object from its current location to the x,y coordinates
in <p>, which can be a single point or a list of points. The relative form specifies
that the object should move from the current position to the dx,dy offset specified by
<displacement>. The optional starting x,y coordinate <s> causes the object to be
moved to that location before starting the move.
The speed of the movement is determined either by specifying a duration <t> for the
movement, or by setting the moveSpeed which is used when no time is supplied.
A control's position can also be set by setting its loc property. Movement can also be
simulated using hide or show with a visual effect scroll.
move btn 1 from 1,1 to 10,10 in 2.5 seconds

 70#204

move fld 1 to the points of graphic "path"

set the moveSpeed to 50 #50 pixels per second

move button 1 from 10,10 to 350,250

move fld 1 relative -3,-5 in 90 millisecs

Note that messages are delivered normally while the move is taking place, allowing
animating a button by changing its icon while it is moving (e.g., use the "send"
command to send a message after a certain period of time has passed). This also
allows for the possibility of stopping a move once it is started, perhaps by handling a
mouseUp message in a "Stop" button. To stop a move, set the loc of the object being
moved to the <finish> point, or use the stop command.
You can disable dispatching of messages during the move by specifying the
without messages clause. If you decide to allow messages while an object is
moving, it is important to prevent another "move" command from being executed
while an object is moving. To prevent this, disable the button that started the move
while the move is executing, or set a custom property or global variable indicating
that a move is taking place and don't execute a move command if this property or
variable is set.
By default, the move will complete before the next script statement is executed. If
you want script execution to continue immediately, use the without waiting
clause. If you need to start moving several objects at the same time, put them in a
group together, or use the lockMoves property to suppress the start of the move until
after each object has been specified in a separate move command.
choose, click, drag, grab, lockMoves, lowResolutionTimers, moveSpeed,
moveStopped, movingControls, play, select, send, set, stop, syncRate, type, visual
multiply

multiply <container> by <expression>
The multiply command multiplies the value of a container by an expression. Both the
expression and the container must have numbers in them. You can verify this with
the is operator. An example:
if field 1 is a number

then multiply field 1 by field 1

multiply count by 5

This function can also be used to multiply each element in an array by a scalar or to
multiply the values in the corresponding elements of two arrays.
add, divide, matrixMultiply, numberFormat, Operators, put, subtract
open

 71#204

open file <expression> [for [binary | text] <mode>]
open process <expression> for <mode>
open printing [with dialog]
open [datagram] socket [to] <host:port> [with message <m>]
The open command opens a file or a separate process specified by expression. The
<mode> parameter can be either read, write, append, neither, or update.
The update mode allows both reading and writing. The append mode will force
writing to the end of the file and can only be used with files. The delimiter used in
the path name on all platforms should be the UNIX standard / character instead of
the DOS standard \ or MacOS standard : character. Use the serialControlString
property to set the properties of serial ports before you open them.
By default, files are opened in text mode, which means linefeeds, carriage returns, or
the combination of the two will be translated to a single line feed (MetaCard's native
text format line delimiter). Supplying the optional "binary" argument prevents this
translation from occurring.
The neither mode can be used when you don't want to collect the output from a
process. Processes opened for write or neither don't have to be closed because
their entries are removed from the openProcesses automatically when they exit
(see also the launch command). Processes opened for read and update must be
closed before they are removed from MetaCard's process table. The append mode
isn't available for processes.
Only one process of a given name can be started. If your stack needs to start more
than one process running the same command, append spaces to the end of the
command name before calling open process. If the file does not exist (for read), or if
the file or directory permissions prevent access the result function will return "Can't
open that file.", otherwise it will return empty. The sysError global property can be
used to determine the cause of the failure.
On Win32 systems, the hideConsoleWindows property can be used to hide the
console window that opens when a "console" application is run. You can still read
the standard output or write to the standard input of these processes even though you
can't see them.
Normally the "print card" command will print each card on a separate page. The
command "open printing" can be used to start batching printed cards into a single
job, which will be sent to the printer when the "close printing" command is executed.
The optional "with dialog" parameter will cause the printer properties dialog to open
on MacOS systems.
open file "dataFile" for read

open process "myProcess" for read

read from process "myProcess" for 3 lines

 72#204

close process "myProcess"

on printCards

open printing

print 2 cards

close printing

end printCards

The "open socket" command opens a TCP socket to the specified host and port. If the
optional "datagram" parameter is supplied, a connectionless UDP socket is created.
The actual connection is made asynchronously, and a socketError message is sent if
the connection cannot be established. The socket can be written to immediately after
this command completes and the written data will be buffered until the connection is
made. The optional "with message" parameter can be supplied if the first operation
on the socket must be a read, if the data to be written is not yet available, or if the
first operation requires information only available for a connected socket (see the
hostAddress function).
To open multiple sockets to the same host:port address, an optional connection
identifier can be supplied by appending it with the | character as a delimiter (e.g.,
"www.metacard.com:80|1").
accept, answer, ask, close, compress, create, delete, do, export, fileName,
formatForPrinting, hideConsoleWindows, hostNameToAddress, import, kill, launch,
openProcesses, openSockets, print, read, rename, replace, revert, result, save,
secureMode, seek, shell, sysError, tempName, there, umask, write
option

option <expression>
The option command opens a stack as an option menu. An option menu is like a
popup menu, except that it is centered on the button instead of around the mouse
pointer position. To function properly, the stack should be opened in a mouseDown
handler in a button's script:
on mouseDown

option "Help Menu"

end mouseDown

Note that it is almost always better to use the button contents or set the button's
menuName property to implement menus. This command is provided for cases
when the menu to be presented can't be determined until mouseDown.
cantModify, close, go, menuButton, menuLines, menuMode, menuName, modal,
modeless, open, palette, popup, pulldown, resizable, style, topLevel, wait
palette

 73#204

palette <expression>
The palette command opens up a stack name specified by an expression as a
modeless dialog box. Modeless dialogs allow interaction with all other modeless
and palette windows and other application windows. They are similar to topLevel
windows and modeless windows, but can't be resized, edited, or iconified
separately (at least not with window managers that work correctly).
Dialogs opened with the palette command always use the browse tool, so it is not
necessary to choose another tool. In order to provide the user with maximum
flexibility, palettes and modeless dialogs should be used instead of modal dialogs
whenever possible.
activatePalettes, answer, ask, cantModify, clone, close, create, decorations, delete,
go, hidePalettes, modal, modeless, open, raisePalettes, resizable, show, style,
topLevel, wait
paste

paste
The paste command puts a copy of the clipboard contents onto the current card (if it
is an object), into the current field (if it is text), or into the current image (if it is an
image selection).
After an object is created, a message is sent that can be used to prepare the
environment to operate on the new object. For example, when a button is created, a
newButton message is sent. The local variable "it" will also contain the long id of
the newly created object.
clipboard, clone, commandKeyDown, copy, create, cut, delete, get, place, put,
rawKeyDown, remove, select, selectedChunk, selectedObject, selection, undo
place

place <background> onto <card>
The place command places a background (group) onto a card. A card can have zero
or more backgrounds, use the place and remove commands to attach these
backgrounds to cards. Use the start and stop commands to edit backgrounds, but
remember that editing a background changes its appearance on all the cards on which
it appears.
place background "flower" onto card "garden"

place bg "clouds" onto this card

backgroundBehavior, clone, copy, create, cut, delete, paste, remove, replace, start,
stop, undo
play

 74#204

play [<type>] <name> [looping] [at <point>] [options <xanim options>]
play [pause | resume | step forward | step back] videoClip <name>
play stop [<type> <name>]
The play command plays a sound through the system's speaker, or starts a movie
directly from a movie file or imported videoClip. This command is provided only for
backward compatibility and all new development should use the start command with
a player object.
Note that since some systems do not have built-in support for sound, this command
is not guaranteed to work on all systems. In addition, it won't work on X terminals or
PC/Mac X servers. <type> is either audioClip or videoClip, with
audioClip being the default if this parameter is omitted. If it is videoClip, a
location can be specified. This point is the center of the movie, and the center of the
card will be used if this parameter is omitted.
Playback of a movie or audio clip can be stopped with play stop, or using the
stop command. A movie can be paused with play pause. A paused movie can be
single stepped forward a single frame with play step forward, stepped back
with play step back, or resumed with play resume.
The <name> parameter is an expression that evaluates to a file name, or the name of
a previously imported object. Be sure to put the name in quotes.
The optional looping parameter will cause the sound or movie to loop until it is
stopped or another sound or movie is played.
The <xanim options> are command line parameters that are passed directly to
XAnim when the play command is executed on UNIX/X11 systems. Run "xanim -h"
from your UNIX shell to get a list of the supported options. Note that the "xanim"
binary must be on the current PATH. If you're distributing a stack on CD, you should
change the PATH to ensure that only the correct xanim binary is on the PATH before
executing the play command. You can set the PATH using a shell script that also
starts up MetaCard, or by putting a path into the global variable $PATH.
Sounds must be in a format appropriate for the platform that MetaCard is running on
(e.g. .l16 on HP 9000/700 workstations, .aiff on SGI IRIS). The Sun/NeXT .au/.snd
format (8-bit 8KHz mulaw encoding) is supported on all platforms, and is the
recommended format for sounds that must play on more than one platform. Note that
the sound data must be in the data fork on MacOS systems and not in the resource
fork.
If a play command for an audio clip is executed before a previous play has
completed, the current sound will stop before the new one is started (no mixing is
supported). The message playStopped is sent to the current card of the stack that
was the defaultStack when the clip finishes playing.
play "music.au" # plays a sound

 75#204

play audioClip "music.au"

play stop # stops sound playback

play videoClip "clown.flc" at 200,200

play stop videoClip

play stop videoClip "clown.flc"

play pause videoClip "clown.flc"

play step forward videoClip "clown.flc"

play resume videoClip "clown.flc"

beep, beepPitch, currentTime, dontRefresh, dontUseQT, duration, frameCount,
frameRate, import, mciSendString, movie, platform, playDestination, playLoudness,
playRate, playStopped, prepare, scale, screenVendor, sound, templateVideoClip,
videoClipPlayer, visual
pop

pop card [<preposition> <container>]
The pop command opens a card that was previously stored with the push command.
If a preposition (after, before, into) and a container is specified, the name of the
pushed card is put into the container.
on shopping

lock messages

push card #store location of this card

go to stack "shoppingList"

get field "grocery"

put "We are out of:" & return & it

pop card #restore the card

unlock messages

end shopping

clone, close, create, delete, go, lock, modal, modeless, open, option, palette, popup,
pulldown, push, topLevel, unlock, visual
popup

popup <expression>
The popup command opens a stack as an popup menu. A common UI technique in
Windows is to open a popup menu when the user presses the right mouse button on
an object:
on mouseUp which

 76#204

if which is 3

then popup "My Prop Stack"

end mouseUp

Note that it is usually easier build menus using the button contents or to set a button's
menuName property. This command is provided for cases when the menu to be
presented can't be determined until mouseDown and for those cases where the
popup must be opened from an object other than a button.
The OSF/Motif Style Guide specifically prohibits putting functions in a popup
menu that are not available through some other function. In addition, expert users
can use accelerators much more efficiently than popups, therefore, it is a good
general rule to avoid the use of popups.
accelKey, cantModify, close, go, menuButton, menuMode, menuName, modal,
modeless, open, option, palette, pulldown, resizable, topLevel, toolTip, wait
post

post <expression> to url <url>
The post command posts the text specified by <expression> to the url specified by
<url> using the HTTP POST protocol. The value returned is placed in the local
variable it.
accept, cachedUrls, go, get, httpHeaders, httpProxy, load, open, read, send, unload,
urlStatus
prepare

prepare [type] <file> [looping] [at <point>]
The prepare command prepares a movie for playback, which is actually started with
the play command. It is used to reduce the delays between the execution of the play
command and the actual start of movie playback. The command line of the prepare
command must be identical to the command line supplied to the play command.
prepare videoClip "clown.flc"

go to next card

play videoClip "clown.flc"

frameRate, import, movie, open, platform, play, read, screenVendor, sound, visual
print

print <card or stack expression> [into <rect>]
print break
This command prints a card to the currently selected printer. On UNIX systems, the
print command creates a PostScript file and runs the printCommand to send the file

 77#204

to an output device. On Windows and MacOS systems, the page is sent to the default
printer or the printer the user selected via the "answer printer" command.
The print command can print a single card, multiple cards, or a whole stack. The
optional <rect> parameter prints a single card into a particular rectangle (specified in
printer points) on the page. If a destination rectangle is not supplied, the printScale
is used to determine the size of the card on the printed page. Examples:
print this card

print card 1 into rect 0,0,468,648

print marked cards

print this stack

If you want to print multiple cards on the same page, use open printing, then use
print on whichever cards you want to print, then close printing. You can cause a
page break with the command print break.
on printCards

open printing

print 2 cards

print break

print 2 cards

close printing

end printCards

answer, close, formatForPrinting, open, pageHeights, printColors, printCommand,
printFontTable, printGutters, printMargins, printPaperSize, printRotated,
printRowsFirst, printScale, printTextAlign, printTextFont, printTextHeight,
printTextSize, printTextStyle, value, write
pulldown

pulldown <expression>
The pulldown command opens a stack as an pulldown menu. To function properly,
the stack should be opened in a mouseDown handler in a button's script:
on mouseDown

pulldown "Help Menu"

end mouseDown

Note that it is almost always better to use the button contents or set the button's
menuName property to implement menus. This command is provided for cases
when the menu to be presented can't be determined until mouseDown.
It is also possible to simulate a menu by using the hide and show commands with a

 78#204

field (see the "Object Font" dialog for an example).
cantModify, close, go, menubar, menuButton, menuMode, menuName, menuPick,
modal, modeless, open, option, palette, popup, raiseMenus, resizable, topLevel, wait
push

push <expression>
The push command puts the name of the card specified by an expression into a
stack of cards. The cards can be popped back out in reverse order using the pop
command.
on shopping

lock messages

push card #store location of this card

go to stack "shoppingList"

get field "grocery"

put "We are out of:" & return & it

pop card #restore the card

unlock messages

end shopping

clone, close, create, delete, go, lock, modal, modeless, open, option, palette, pop,
popup, pulldown, topLevel, unlock, visual
put

put <expression>
put <expression> [into | before | after] container
The put command puts the value of an expression into a container. It is one of the
most commonly used MetaTalk commands. With no preposition, the put command
puts the value into the msg variable (which is displayed by the Message Box). This
is useful primarily as a debugging aid, since you can use it to keep track of the
execution of a script. The "into" preposition causes put to replace the contents of the
container with the new value. The "before" and "after" prepositions prepend and
append the new value to the existing contents of the container, respectively.
put empty into char 4 to 9 of it

put "Hello!" #put "Hello!" into message box

put return & line 1 of field "flower" after plant

put it into tmpValue

add, clone, constant, copy, create, cut, delete, get, paste, place, post, remove, replace,
select, set, text, undo, write

 79#204

quit

quit
The quit command exits the MetaCard engine. A shutdown message is sent, the
current handler exits immediately, and no other scripts will run afterwards. If a
confirmation is required before exiting, put the quit command in the script for the
confirm button. Note that closing all stacks is another way to force an application to
exit.
on myExitHandler

answer "Exit MetaCard?" with "Yes" or "No"

if it is "Yes" then quit

end myExitHandler

close, go, open, openStacks, shell, topLevel
read

read from file | process <name> [at <offset>] until <char> [in <time>]
read from file | process <name> [at <offset>] for <count> [in <time>]
read from socket <s> [for | until <cond>] [with message <m>]
The read command reads from a file or process specified by the expression <name>,
putting the characters read into the local variable "it". Note that <name> is case
sensitive on all platforms, so you must pass exactly the same string passed to the
open command.
The constant stdin can also be used to read from MetaCard's standard input on
UNIX systems (stdin is opened by default, no need to open it with the open
command).
The result will be set to the string eof when an end-of-file was encountered during
the read, or to an error message if some other error occured. An empty result
indicates a successful read.
If an <offset> is supplied, MetaCard will seek to that offset before starting the read.
If the offset is negative, the seek will be relative to the end of the file. See also the
seek command.
The <char> is a character that the read should stop at. Useful values include the
special constant eof which will read until the end of file and empty which will read
from a process until there is no more to read. Note that the <char> value can be a
string, which will be matched exactly and completely, with the file pointer ending up
at the end of the string in the file.
The "for" form of read reads <count> characters from the input or until eof,
whichever comes first. This form is most useful when the data file to be read has

 80#204

fixed length records. You can also specify a unit type (character, word, item, line,
int1, uint1, int2, uint2, int4, uint4), in which case the specified number of that chunk
type are read. If one of binary formats, such as a 4 byte unsigned integer (as specified
by uint4), a comma separated list of numbers is returned corresponding to the binary
values read. The <time> parameter can be specified to allow a process time to
respond after an earlier write. If the read can't be completed in that time, the result is
set to "time out". For example, after writing a command to a shell process, a delay is
required to give the process time to complete the command:
on fileList

put "#####" into handshake #recognize end of ls

open process "sh"

write "ls -l" & return & "echo" && handshake\

& return to process "sh"

read from process "sh" until handshake \

in 5 seconds

end fileList

read form file "data" until eof

put it into datafilecontents

open process "ls -l" for read

read from process "ls -l" for 4 line

The "read from socket" command is used to read data from a socket. Sockets are
always opened in binary mode and so any required data conversion must be done in
scripts. If the optional "message" parameter is supplied, a message will be sent when
the read completes, otherwise the read blocks until the data has been read. If no "for"
or "until" condition is supplied, the message will be sent when any data arrives at the
socket.
accept, ask, binaryDecode, close, Constants, export, get, import, isoToMac,
numToChar, open, post, put, result, seek, serialControlString, set, shell,
socketTimeoutInterval, there, write
record

record sound file <f> [as 4CC <c> | with <q> quality]
This command uses QuickTime to record sounds from the currently selected audio
input into a file specified by <f>. The optional 4 character code <c> determines the
format of the resulting file and can be any of the values returned by the
recordFormats function. The optional recording quality <q> can be "good", "better",
or "best" with "good" being the default quality.
Recording continues until the command "stop recording" is executed or the recording

 81#204

property is set to false.
move, play, qtVersion, recording, recordLoudness, stop
redo

redo
The redo command is reserved for future expansion.
clone, copy, create, delete, paste, place, put, remove, undo
remove

remove <background> from <card>
remove [the] script of <object> from front | back
This command removes a background from a card.
remove background "flower" from card "plants"

remove bg "clouds" from this card

It can also be used to remove the script of an object from the frontScripts or
backScripts.
clone, copy, create, cut, delete, insert, paste, place, replace, start, stop, undo
rename

rename [file | folder] <oldname> to <newname>
This command changes the name of file specified by <oldname> to the string
specified by <newname>. Either argument can specify a full or relative path to a
directory (folder) other than the current directory.
On UNIX systems, you can move a file or directory to another directory by
specifying different directories for <oldname> and <newname>, but the parent
directory for <newname> must already exist. MacOS and Win32 systems do not
support moving files or directories to other directories.
clone, copy, create, delete, directories, files, fileType, name, open, replace, umask,
write
replace

replace <pattern> with <replacement> in <container>
The replace command replaces all occurrences of the string <pattern> with the string
<replacement> in the variable or field specified by <container>. This command
executes faster than the replaceText function, and does not require that special
characters be escaped in the pattern string.
binaryEncode, caseSensitive, filter, find, format, lineOffset, matchText, offset,

 82#204

Operators, replaceText
reply

reply <string> [with keyword <keyword>]
reply error <string>
The reply command is a MacOS-only command that returns data to the application
that sent an appleEvent to MetaCard. It is similar to the return keyword, but returns
data to the calling program instead of to another MetaTalk script. The optional
<keyword> parameter can be used to return a specific type of data to the sending
application.
address, appleEvent, ask, environment, request, return, send, value
request

request <expression> from program <program>
request appleEvent | ae class | id | returnid | data [with keyword <keyword>]
The request command, which is only available on MacOS systems, sends an "eval"
appleEvent to a program. The target program should evaluate the expression sent to
it and return the result in the local variable "it". Any errors will be returned in the
result.
The request appleEvent command can be used to extract data from an appleEvent
message sent to MetaCard. See the documentation for the sending application to
determine which are valid keywords for the appleEvents it sends.
request ae data with keyword "trans"

address, answer, appleEvent, get, reply, send, value
reset

reset <templateObject>
reset paint
Resetting a template object returns it to its startup settings. It is a good practice to
reset any template object changed in your scripts after you've created an object from
the template.
This command can also be used to reset the painting properties to their start up
values:
brush = 8
spray = 31
eraser = 2
centered = False

 83#204

filled = False
grid = False
gridSize = 8
lineSize = 1
pattern = 1
polySides = 4
roundEnds = False
slices = 16
penColor = Black
brushColor = White
create, Properties by Name, templateButton, templateCard, templateField,
templateGraphic, templateGroup, templateImage, templateScrollbar, templateStack
revert

revert
This command reverts to the last saved version of a stack. Note that all changes to all
substacks of the current stack are also discarded.
close, directory, export, go, import, mainStack, open, read, result, save, seek, shell,
stackFiles, substacks, there, topLevel, write
rotate

rotate [image <i>] by <d>
This command flips a rotates an image by <d> degrees. If necessary the size of the
image will be increased to make room for the rotated pixels unless the image's
lockLoc property is set to true. The optional <i> parameter will select and then rotate
that entire image.
Note that some image quality is lost each time you rotate, so it is not practical to
rotate a single selection multiple times. Instead, make multiple copies of the image
and rotate part or all of each copy a single time, then hide and show the copies as
necessary.
choose, clone, flip, rotate, select
save

save <stack> [as <filename>]
The save command saves a stack specified by <stack> either into the file it was read
from (its fileName property), or to a file specified by <filename>. Note that
substacks are saved with their mainStack.

 84#204

To emulate the automatic save behavior of Apple Corporation's HyperCard, put the
following handler into a stack's script:
on closeStack

save this stack

end closeStack

You could also use the send command to periodically send a message that would
cause the stack to be saved.
Note that the save command cannot be used in applications built with the Standalone
Builder because most operating systems do not allow writing to the executable of a
currently executing program.
close, directory, export, fileName, go, import, mainStack, open, read, result, revert,
seek, send, shell, stackFiles, stackFileType, substacks, there, topLevel, write
seek

seek to | relative <position> in file <filename>
The seek command seeks to a position in a file specified by <filename>. If the "to"
mode is specified, the value of <position> specifies a byte offset from the start of the
file. If the "relative" mode is specified, the seek is relative to the current file position
in the file.
seek to 200 in file "data"

on readFile

open file "data" for read

seek relative 200 in file "data"

read from file "data" for 3 lines

put it

end readFile

close, export, import, open, read, result, save, shell, there, write
select

select <object> [and <object> ...]
select <chunk>
The select command selects the object specified by <object> or the chunk specified
by the chunk expression <chunk>. The copy, cut or delete commands can then be
used on the selection. For example, you can select objects as follows:
select button "blueColor"

select field 1

 85#204

You can also use select to select text within a field, or to position the cursor at a
particular location in a field:
select word 3 of field "some field"

select line 3 of field "text"

select before char 3 of field "whatever"

select after text of field 1

Note that you should use the hilitedLines to select lines in a listBehavior field
instead of select. Use the focus command to set the keyboard focus to a field without
changing where the insertion cursor is. To unselect all text, use "select empty".
activatePalettes, centered, click, clone, copy, create, cut, delete, find, flip, focus,
grab, listBehavior, paste, place, put, remove, rotate, selectedText, selected,
selectedObjectChanged, selectGroupedControls, selection, selectionChanged,
selectionMode, traversalOn, undo
send

send <message> to <object> [in <time>]
send <message> to program <program> [with <type> | without reply]
The send command sends a message to an object. The message can be either one of
the predefined Messages, or the name of another handler in the script. Any
parameters to be passed to the handler should be part of the <message> string,
separated by commas. The whole message should be in quotes, but note that
expressions within the message string are evaluated just they are with the do
command. For example, the following handler sends "mouseUp" with a parameter of
2 to the button:
put 1 into x

send "mouseUp x + 1" to button "example"

One common use of the command is to send a mouseUp message to the default
button in a dialog box. Putting this handler in the card script means that you don't
have to write a third handler that would be called by the mouseUp and returnKey
message handlers:
on returnKey

send "mouseUp" to button "OK"

end returnKey

Note that when you send a message to an object in another stack, the object context
is changed. So for example "field 1" refers to the first field in the current card of the
stack that contains the object whose handler is executing. If you want to refer to
objects in the stack containing the handler that sent the message, use the call
command, or use the go command or set the defaultStack to change the current

 86#204

context.
The send to program command (which can only be used on MacOS systems) sends
an AppleEvent to another application. The target program can be specified simply
using its name if it is installed or running on the same system as the MetaCard
application, or with an address of the form "zone:machine:program" if it is running
on another system. Normally MetaCard waits for the target program to send a reply
(which will be put into the result) before continuing. Adding "without reply" will
cause execution to continue immediately. You can specify an AppleEvent class and
id other than the default "miscdosc" by supplying it in the expression <type>. The
word "application" can be used as a synonym for "program" in this form of the send
command.
The send command should be used sparingly, as it can make scripts difficult to
understand and to debug. Send also executes somewhat more slowly than calling a
handler using the normal message passing hierarchy. In most cases, it is possible to
avoid using send by putting message or function handlers in the card or stack script.
The exception to this recommendation is when using send to cause a handler to be
called at some point in the future. In this case, send is much more efficient, and much
more flexible, than using the wait command to wait for a certain period of time to
pass, or handling the idle message. The id of the message added to the
pendingMessages can be retrieved with the result function, and passed to the
cancel function if needed:
send "goNextCard" to me in 3 seconds

put the result into timerid

cancel timerid

You might also consider setting a custom property of the target object and using
getProp and setProp message handlers instead of send. While the number of
parameters that can be passed to these functions is limited to one, custom property
handlers execute more quickly and can be easier to maintain.
script in button "B1":

on mouseUp which

#if mouse button 1 is clicked,

#change the color of button "B2"

#to red, otherwise to blue

if which is 1 then

send "changeColor red" to button "B2"

else send "changeColor blue" to button "B2"

end mouseUp

script in button "B2":

 87#204

on changeColor newColor

#change my background color to newColor

set the backColor of me to newColor

end changeColor

answer, appleEvent, call, cancel, choose, click, defaultStack, do, drag, dynamicPaths,
go, idle, kill, launch, move, param, pass, pendingMessages, request, result, save,
seconds, signal, start, stacksInUse, time, type, value, wait, waitDepth
set

set [the] <property> [of <object>] to <value>
The set command sets a property specified by <property> to the value of an
expression <value>. If the property is an object property, <object> specifies the
object by name or by number.
set the moveSpeed to 10

set the cursor to watch

set the visible of me to true

set the loc of button "fly" to 120,230

customKeys, customPropertySet, define, get, hide, keys, put, propertyNames, read,
replace, show, Properties by Name, Operators
show

show <object> [with visual effect <effect>]
show menubar
show <count> cards
The show <object> command sets the visible property of the specified object to
true, reversing the action of a hide command. Note that show does not open stacks.
Use the go, modal, modeless, palette, or topLevel commands to open a stack.
When showing an object, an optional visual effect can be supplied that will be
executed as the object is shown.
show field "extraInfo" with visual effect dissolve

show button 1

show 3 cards #flip 3 cards of the current stack

The show menubar command shows the system menubar on MacOS systems.
The show <count> cards command flips through a number of cards specified
by the expression <count>.
alwaysBuffer, bufferHiddenImages, create, go, hide, invisible, lock, lockMessages,

 88#204

menubar, modal, modeless, move, palette, resizable, showInvisibles, toolTip,
topLevel, visible, visual
sort

sort [[[marked] cards of] <stack> [<dir>] [<key>] [by <exp>]
sort [<chunks> of] <container> [<dir>] [<key>] [by <exp>]
The sort command sorts either the cards in a stack or the lines or items in a container.
<dir> is either "ascending" or "descending" with "ascending" being the default.
<key> is either "datetime", "text" or "numeric" with "text" being the default. <exp>
can be any expression which differentiates the cards or chunks in a container. For
example, to sort the cards of a stack by a particular field treating the contents of each
field as a number, you would use something like:
sort cards numeric by field "amount"

To sort the lines of a field in descending order alphabetically:
sort field "file names" descending

To randomize the order of the lines of a field:
sort field "numbers" by random(1000)

When sorting fields or variables, <chunks> is either the word "lines" or "items", and
the "by" expression can use the term "each", which refers to the line or item being
sorted. To sort the lines of a field by the second word in each line (by last name if the
field contained names, for example):
sort lines of field 1 by word 2 of each

The sort command uses a stable sort, which means that it does not change the order
of items that have the same sort key. For example, if you wanted to sort a field
containing a list of names, you could sort by first name (word 1) and then sort again
by last name (word 2). The result will be that lines with the same last name will be in
order of first name.
compress, convert, copy, cut, delete, find, paste, put, random, undo
split

split <var> by <pd> [and <sd>]
This command splits a string variable into separate numerically-indexed array
elements using the delimiter <pd>. If the optional secondary delimiter <sd> is
supplied, the array will instead be addressed by string keys where the text before
<sd> will be the key and the text after will be the value.
add, combine, extents, intersect(C), transpose, union
start

 89#204

start editing <background>
start using <stack>
start <player>
The start editing command puts the defaultStack into background editing mode. In
this mode, objects created will become part of the group specified by <background>.
When done editing, the stop command will return the stack to normal mode (where
background controls cannot be selected with the pointer tool). Note that the stack
must be opened as a topLevel stack and must not have its cantModify property set to
true.
The start using command is used to add another stack's script to the message passing
hierarchy. The "start using" command can also be executed using the command
library. Unlike the insert command, stacks are always added to the end of
message passing hierarchy. For example, you could put frequently used functions in
a single stack's script and call these functions without having to use send.
The start <player> command starts a paused player control.
start using stack "Utilities"

put the stacksInUse

stop using stack "Utilities"

start editing background "newBg"\

of stack "newStack"

stop editing bg "newBg" of stack "newStack"

start player "myplayer"

cardNames, clone, copy, create, cut, delete, dontUseQT, editBackground,
defaultStack, insert, libraryStack, mainStack, mainStacks, paste, paused, place, put,
remove, scriptLimits, send, stacksInUse, stop, there, undo
stop

stop editing | moving | playing | using <object>
stop <player>
The stop editing command turns off background editing for the defaultStack or the
background specified by <object>. The stop moving command stops an object that
was set into motion with the move command. The stop playing command stops
playing a video or audio clip started with the play command. The stop using
command is used to remove a stack's script from the message passing hierarchy that
was added with start using. This can also be called with the command release
library.

start using stack "Utilities"

 90#204

put the stacksInUse

stop using stack "Utilities"

start editing background "newBg" of stack "newStack"

stop editing bg "newBg" of stack "newStack"

stop playing videoClip "myclip.mov"

stop player "myplayer"

clone, copy, create, cut, delete, editBackground, move, moveStopped, paste, paused,
place, play, playStopped, put, releaseStack, remove, stacksInUse, start, there, undo
subtract

subtract <expression> from <container>
The subtract command subtracts an expression from a container. Both the expression
and the container must have numbers in them. You can verify this with the is
operator, for example:
if field 1 is a number

then subtract 5 from field 1

subtract refund from total

subtract withdrawal from line 3 of field "Status"

This function can also be used to subtract a scalar from each element in an array or to
subtract the values in the corresponding elements of two arrays.
add, divide, multiply, Operators, put
topLevel

topLevel <stack>
The topLevel command opens up a stack name specified by an expression as a
topLevel window. If the stack's cantModify property is set to false, the stack will be
editable, and the stack's controls can be selected, moved and sized with the pointer
tool. If the stack's style property has been set, it overrides the style specified by the
command used to open the stack.
cantModify, clone, close, create, decorations, defaultStack, delete, go, group, modal,
modeless, open, option, palette, place, popup, pulldown, remove, resizable, show,
style, wait, windowBoundingRect
type

type <expression> [with key [, key2 [, key3]]]
The type command is used to send synthetic keyboard events to the defaultStack. It
can also be used to type text into a field. The key parameters are chosen from the set

 91#204

of {commandKey, optionKey, shiftKey}. Note, using the put command is a much
more efficient way to put text into a field.
on enterText

choose browse tool

click at the loc of field "Shape"

type "Triangle and Circle"

end enterText

choose, click, drag, focus, move, put, select, shiftKey, selectedChunk, typingRate,
rawKeyDown
undefine

undefine <prop> of <object>
The undefine command is provided for OMO compatibility and is non-functional.
define, set
undo

undo
The undo command undoes the last painting action, object deletion or object
movement, when performed by the user. Note that deletions or changes made with
scripts (including those done with the standard menus) can't be undone. Undoing
again undoes the undo (puts the object back to its state before the first undo).
clone, copy, create, cut, delete, paste, place, put, redo, remove, select, selectedChunk,
selectedObject, selection
ungroup

ungroup
The ungroup command breaks the selected group up into a set of selected controls.
copy, cut, delete, go, group, paste, place, remove, start
unhilite

unhilite <button>
This command sets the hilited property of a button specified by <button> to false.
disable, enable, hilite
union

union <a1> with <a2>
This command computes the union of the elements in array <a1> with the elements

 92#204

in <a2>. The result is stored in <a1>. Note that the values for each element come
from array <a1> even if they differ from the values in the corresponding elements of
array <a2>.
combine, extents, intersect(C), intersect, split
unload

unload [url] <url>
This command deletes the file specified by <url> from the local cache, canceling the
download if it is not complete.
cachedUrls, close, delete, go, kill, load, play, post, open, send, set, urlStatus
unlock

unlock colormap|error dialogs|menus|messages|moves|recent|screen
unlock screen [with visual effect <effect>]
The unlock command sets a global property set with the lock command back to false.
When unlocking the screen, a visual effect can be specified with the same syntax
used in the visual command. All locks are removed when all pending handlers have
been finished execution. Still, it is a good idea to unlock when you no longer need
the property locked.
An example using unlock error dialogs:
on mouseUp

lock error dialogs

someHandler

#if there's an error, it will trigger the

#errorDialog handler instead of putting up the

#standard error dialog box

end mouseUp

on errorDialog

answer "Script error occurred. Please try again"

end errorDialog

An example using unlock screen and messages:
on mouseUp

lock screen #keep user from seeing stack redraw

lock messages #prevent message from sending

go to card 3 of stack "userPassword"

 93#204

#do something.....

unlock screen

unlock messages

end mouseUp

go, lock, lockColormap, lockErrorDialogs, lockMenus, lockMessages, lockMoves,
lockRecent, lockScreen, recentCards, recentNames, resizeStack, visual
unmark

unmark all cards
unmark <card>
unmark cards where <expression>
unmark cards by finding <expression> [in <field>]
The unmark command sets the mark property of a card based on the results of a text
search or an expression evaluation. For example, to unmark all cards in an address
book that have a telephone number in Nevada do one of the following:
unmark cards where field "Phone" contains "702"

unmark cards by finding "702" in field "Phone"

You can also unmark specific cards:
unmark this card

unmark card 5

convert, do, find, go, mark, mark(P), sort, value
visual

visual [effect] <name> [<speed>] [to <image>] [with sound <sound>]
Visual effects provide an interesting way to go between cards. The <name>
parameter is one of the following:
barn door [close | open]
checkerboard
dissolve
iris [close | open]
plain
push [down | left | right | up]
reveal [down | left | right | up]
scroll [down | left | right | up]

 94#204

shrink [to bottom | to center | to top]
stretch [from bottom | from center | from top]
venetian blinds
wipe [down | left | right | up]
zoom [close | in | open | out]
You can also pass an encoded effect description as returned by the answer effect
command, or a 4 character code as specified in the QuickTime developer
documentation.
The <speed> parameter is [fast | slow[ly] | very fast | very slow[ly]]. The <image>
parameter is one of [black | white | gray | inverse | card]. An optional audioClip
<sound> can be specified which causes the clip to be played along with the effect.
This provides better synchronization than is possible using the play and visual
commands separately.
Any number of visual commands can be executed before a go command and they are
executed in sequence. For example, this handler fades out to black screen, and fades
in to the next card:
on fadeOutIn

visual effect dissolve slowly to black\

with sound "birds.au"

visual effect dissolve slowly to card

go to next card

end fadeOutIn

This handler goes to next card with visual effect:
on nextCard

visual effect scroll left fast

go to next card

end nextCard

answer, do, effectRate, go, hide, lock, move, play, pop, push, qtEffects, show, unlock
wait

wait [for] <count> [milliseconds | seconds | ticks]
wait until <condition> [with messages]
wait while <condition> [with messages]
wait for messages
The wait command freezes the execution of MetaCard for a specified period of time,

 95#204

or until a condition has been met. If the unit is not specified, the expression
<count> specifies how many ticks to wait, a tick being 1/60 of a second. <condition>
is any expression that evaluates to a boolean value (true or false). For example, to
wait until the user presses a mouse button:
wait until the mouse is down

In most cases using the send command to send a message to the object after a
certain period of time is a better technique than using wait, since send allows you to
wait for both a certain period of time and at the same time wait for other events such
as mouse clicks and key presses. You can also include the optional "with messages"
clause which will allow messages to be delivered to other objects while waiting.
idle, idleRate, lowResolutionTimers, milliseconds, mouse, repeat, seconds, send,
ticks, waitDepth
write

write <expression> to file | process <name> [at end | eof | <offset>]
write <exp> to socket <s> [with message <m>]
The write command writes to an open file or process. Note that <name> is case
sensitive on all platforms, so you must pass exactly the same string passed to the
open command. If there the file or process is not opened or there is an error writing
to it, the result will contain an error message. An empty result indicates a successful
write.
On UNIX systems, the constant stdout can also be used to write to MetaCard's
standard output. Like stdin, stdout is opened when MetaCard starts up, there is no
need to open it with the open command. This feature can be used to output
debugging messages to monitor the progress of your scripts:
write "i is" && i & return to stdout

Note that the whole text value of the expression is written to the file, use a chunk
expression to specify only part of the expression.
If an <offset> is supplied, MetaCard will seek to that offset before starting the write.
If the offset is negative, the seek will be relative to the end of the file. See also the
seek command.
write "more data" to file "dataFile" at 300

If an existing file is opened for write mode only, the file will be truncated after the
last character written to the file. If the file is opened for update (the default), it will
not be truncated.
The "write to socket" command is used to write binary data to a socket. Any data
conversion required must be performed by a script. If the optional message parameter
is supplied, that message will be sent when the write completes. Otherwise, the write
blocks until all the data has been written.

 96#204

binaryEncode, close, empty, export, format, formattedText, get, import, macToIso,
open, put, read, save, seek, set, shell, serialControlString, socketTimeoutInterval,
there

Functions

abs

abs(<expression>)
The abs function returns the absolute value (a positive value) of an expression that
yields a number.
add the abs of value1 to value2

add abs(value1) to value2

is, round, sqrt, trunc
acos

acos(<expression>)
Returns the arc cosine of a numeric expression (in radians). To convert to degrees,
multiply by 180 and divide by the constant pi.
put acos(1) * 180 / pi into value2

asin, atan, atan2, Constants, cos, numberFormat, put, sin, tan
aliasReference

aliasReference(<alias>)
Returns the path to the file that the alias (also known as a shortcut on Win32 systems
and a symbolic link on UNIX systems) file <a> points to.
create, directory, files, longFilePath, shortFilePath, specialFolderPath, there
alternateLanguages

the alternateLanguages or alternateLanguages()
Returns a return-delimited list of the alternate scripting languages available on the
current system. This function is only supported on MacOS systems.
do, platform, systemVersion, value
altKey

the altKey or altKey()
Returns "up" or "down" depending on the position of the keyboard "Alt" key. This
function is the same as the optionKey function.

 97#204

on checkKey

if altKey() is "down" then exit checkKey

else put "the Alt-key is up"

end checkKey

commandKey, keysDown, metaKey, optionKey, shiftKey, mouse
annuity

annuity(<rate>, <periods>)
The annuity function returns the present or future value of an ordinary annuity. The
two parameters are expressions that specify the rate and the number of periods,
respectively.
annuity(.020, 36)

annuity(currentRate, monthsOfLoan)

compound, exp
asin

asin(<expression>)
Returns the arc sine of a numeric expression (in radians). To convert to degrees,
multiply by 180 and divide by the constant pi.
put asin(1) into value1

acos, atan, atan2, Constants, cos, put, sin, tan
atan

atan(<expression>)
Returns the arc tangent of a numeric expression (in radians). To convert to degrees,
multiply by 180 and divide by the constant pi.
put atan(sqrt(4)) * 3

put the atan of tempResult

acos, asin, atan2, cos, put, sin, tan
atan2

atan2(<y>, <x>)
Returns the arc tangent of two numeric expressions y/x (in radians) using the signs of
both arguments to determine the quadrant of the result. To convert to degrees,
multiply by 180 and divide by the constant pi.
put atan2(20, 40)

 98#204

acos, asin, atan, cos, Constants, put, sin, tan
average

average(<list>)
The average function averages a comma separated list of expressions or the elements
in an array variable. For example:
put average(1,2,3,4)

would put 2.5 into the Message Box.
The list could also be a single container. For example
put "1, 2, 3, 4" into somevar

put average(somevar)

would also put 2.5 into the Message Box.
add, divide, extents, max, median, min, Operators, round, statRound,
standardDeviation, sum
backScripts

the backScripts or backScripts()
The backScripts function returns a list of the objects that will receive messages that
are not handled by the target or any object above it in the message passing
hierarchy.
frontScripts, insert, remove, script, start
base64Decode

base64Decode(<expression>)
This function decodes a base64 (RFC 2045) string, a format frequently used to
encode binary data in MIME mail messages and HTTP transfers.
accept, base64Encode, binaryDecode, charToNum, convert, decompress, httpProxy,
load, numToChar, open, post, put, toLower, toUpper, urlDecode
base64Encode

base64Encode(<expression>)
This function encodes <expression> using base64 (RFC 2045), a format frequently
used to encode binary data in MIME mail messages and HTTP transfers.
base64Decode, binaryEncode, charToNum, compress, convert, httpProxy,
macToISO, md5Digest, numToChar, put, toLower, toUpper, urlEncode
baseConvert

 99#204

baseConvert(<expression>, <source>, <dest>)
This function converts a numeric expression from the base <source> to the base
<dest>. For the following will convert the base 10 number 8 to base 2 (binary):
put baseConvert(8, 10, 2) #puts "1000"

put baseConvert(175, 10, 16) #puts "AF"

This function would be most useful for building hex calculators and other debugging
aids. Note that the other mathematical Commands and Functions all operate in
base 10, so conversions are required at both ends of an expression.
add, base64Encode, binaryEncode, charToNum, compress, convert, convertOctals,
format, md5Digest, numToChar, put, replace, toLower, toUpper, urlEncode
binaryDecode

binaryDecode(<format>, <exp>, v1, ...)
This function takes the data supplied in the parameter <exp> and decodes it into
variables v1 ... as specified by the <format> parameter. It is useful when binary data
structures must be read from a file or socket and converted to a form that can be
more easily manipulated.
The format string can contain one or more of the following types. Each type can be
followed by an integer, specifying the number of chunks to convert, or a * specifying
that the remainder of the input string should be decoded as that type. Note that the
destination variables must be declared before they can be used.
a - decode a single character
A - decode a single character, but strip spaces
b - decode to a string of 1s and 0s for the number of bits specified
B - same as "b", but work from high end of each byte
h - decode to a string of hexidecimal digits
H - same as "h", but work from high end of each byte
c - decode as signed single-byte integers
C - decode as unsigned single-byte integers
s - decode signed two-byte integers in host order
S - decode unsigned two-byte integers in host order
i - decode signed four-byte integers in host order
I - decode unsigned four-byte integers in host order
n - decode signed two-byte integers in network order
N - decode signed four-byte integers in network order

 100#204

f - decode single precision (four-byte) floating point
d - decode double precision (eight-byte) floating point
x - skip a byte in the input
The return value is the number of arguments converted.
This example extracts the characters in a string back out into variables var1 (which
gets "AB") and var2 (which gets "CDE"):
local v1, v2

get binaryDecode("a2a*", "ABCDE", v1, v2)

This example extracts the integer values of the first two characters in a string into
variables v1 (which gets 65) and v2 (which gets 66). It's similar to the charToNum
function, but works on multiple characters at once. The last 3 characters are ignored:
local v1, v2

get binaryDecode("cc", "ABCDE", v1, v2)

This example extracts the hexidecimal values of the first two characters in a string
into variables v1 (which gets 41, the hex value of 65) and v2 (which gets 42, the hex
value of 65). It's similar to the baseConvert function, but works on multiple
arguments at once:
local v1, v2
get binaryDecode("H2H2", "AB", v1, v2)

accept, base64Decode, baseConvert, binaryEncode, md5Digest, isoToMac, open,
uniDecode, urlDecode, read
binaryEncode

binaryEncode(<format>, arg1, ...)
This function takes the data supplied in the parameter list and encodes it into a
binary value as specified by the <format> parameter. It is useful when binary data
structures must be written to a file or socket.
The format string can contain one or more of the following types. Each type can be
followed by an integer, specifying the number of chunks in each parameter to
convert, or a * specifying that all the data in the parameter should be encoded as that
type:
a - encode a single character, pad with null bytes
A - encode a single character, pad with spaces
b - encode a string of 1s and 0s into bits
B - same as "b", but work from high end of each byte
h - encode hex digits

 101#204

H - same as "h", but work from high end of each byte
c - encode signed single-byte integers
C - encode unsigned single-byte integers
s - encode signed two-byte integers in host order
S - encode unsigned two-byte integers in host order
i - encode signed four-byte integers in host order
I - encode unsigned four-byte integers in host order
n - encode signed two-byte integers in network order
N - encode signed four-byte integers in network order
f - encode single precision (four-byte) floating point
d - encode double precision (eight-byte) floating point
x - skip a byte in the input
This example concatenates the first two characters in the first argument to all of the
characters in the second argument. The value returned is "ABXYZ":
put binaryEncode("a2a*", "ABC", "XYZ")

This example encodes two integers into two characters, undoing the charToNum
operations. It returns the string "AB":
put binaryEncode("cc",\

charToNum("A"), charToNum("B"))

This example encodes two two-character hexidecimal strings into the character string
"AB":
put binaryEncode("H2H2", "41", "42")

base64Encode, baseConvert, binaryDecode, open, uniEncode, urlEncode, write
buildNumber

buildNumber() or the buildNumber
If more than one build of a particular version is required to provide short-term fixes
to specific problems, the buildNumber property can be used to distinguish these
versions from one another.
platform, qtVersion, systemVersion, version
cachedUrls

the cachedUrls or cachedUrls()
This function returns a list of the currently cached URLs. It can be used to locate
URLs that are no longer needed so that they can be unloaded.

 102#204

repeat for each line l in the cachedUrls

unload url l

end repeat

load, play, post, send, unload, urlEncode
capsLockKey

the capsLockKey or capsLockKey()
Returns "up" or "down" depending on the position of the keyboard "Caps Lock" key.
This function is the same as the altKey and metaKey functions.
altKey, click, extendKey, commandKey, drag, metaKey, optionKey, shiftKey,
mouse, type
charToNum

charToNum(<character>)
This function returns the numeric value of <character> based on its position in the
current character set.
charToNum(10) #returns 49 (value of 1)

put the charToNum of "A" #returns 65

baseConvert, binaryDecode, charset, compress, isoToMac, macToISO, numToChar,
toLower, toUpper, uniEncode, urlEncode
clickChar

the clickChar or clickChar()
The clickChar returns the character in a field that was clicked on.
clickCharChunk, clickField, clickH, clickLine, clickLoc, clickText, clickV,
foundChunk, hilitedLines, listBehavior, mouseChunk, selectedChunk, textStyle
clickCharChunk

the clickCharChunk or clickCharChunk()
The clickCharChunk function returns a chunk expression that describes the
clickChar.
clickChar, clickField, clickH, clickLine, clickLoc, clickText, clickV, foundChunk,
hilitedLines, listBehavior, mouseChunk, selectedChunk, textStyle
clickChunk

the clickChunk or clickChunk()
The clickChunk function returns a chunk expression that describes the clickText.

 103#204

One of the most useful application of this function is to select the word or phrase the
user clicked on, for example:
select the clickChunk

The string returned is of the form "char x to y of field z" where x, y, and z are
integers.
click, clickCharChunk, clickField, clickH, clickLine, clickLoc, clickText, clickV,
foundChunk, hilitedLines, listBehavior, mouseChunk, selectedChunk, textStyle
clickField

the clickField or clickField()
Returns the name (or id if no name) of the field the user last clicked on.
clickChunk, clickText, foundField, mouseControl, selectedField
clickH

the clickH or clickH()
Returns the x coordinate of the last place the user clicked. The position is retained
until the next mouse click, unlike the click functions that apply only to fields such as
clickText which "forget" their values during some editing operations. Be sure to
check that the clickStack is the correct value, since the clickH is relative to the
upper left corner of the clickStack.
click, clickChunk, clickField, clickLine, clickLoc, clickStack, clickText, clickV,
foundLoc, mouse, mouseH, mouseLoc, mouseUp, mouseV, select
clickLine

the clickLine or clickLine()
The clickLine function returns a chunk expression that describes the line of text the
user last clicked on. One of the most useful application of this function is to select
the line:
select the clickLine

The returned string is of the form "line x of field y" where x and y are integers. For a
more precise specification of the words clicked on, use the clickChunk function.
click, clickChunk, clickField, clickH, clickLoc, clickText, clickV, foundLine,
hilitedLines, linkColor, listBehavior, mouseLine, selectedChunk, textStyle
clickLoc

the clickLoc or clickLoc()
Returns the x,y coordinates of the last place the user clicked. The position is retained
until the next mouse click, unlike the click functions that apply only to fields such as

 104#204

clickText which "forget" their values during some editing operations. Be sure to
check that the clickStack is the correct value, since the clickLoc is relative to the
upper left corner of the clickStack.
click, clickChunk, clickField, clickH, clickLine, clickStack, clickText, clickV,
foundLoc, mouse, mouseH, mouseLoc, mouseUp, mouseV, select
clickStack

the clickStack or clickStack()
The clickStack returns the name of the stack containing the clickLoc.
clickLoc, defaultStack, mouseStack, topStack
clickText

the clickText or clickText()
The clickText function returns the actual text the user clicked on. This function can
be used to implement a simple hypertext capability. By naming the cards to
appropriate values and putting the following in a mouseUp handler, the user can
navigate in the stack merely by clicking on the appropriate words:
if there is a card the clickText

then go to card the clickText

Note that the field must be locked for button 1 to be used for hypertext jumps. Button
3, however, can be used for hypertext jumps even in unlocked fields since it is not
used to manipulate text or graphics (button 2 does a "quick-paste" of text selected in
another application).
click, clickChar, clickChunk, clickField, clickH, clickLine, clickLoc, clickV,
foundText, listBehavior, matchText, mouseChunk, mouseUp, mouseText, select,
selectedText, textStyle
clickV

the clickV or clickV()
Returns the y coordinate of the last place the user clicked. The position is retained
until the next mouse click, unlike the click functions that apply only to fields such as
clickText which "forget" their values during some editing operations. Be sure to
check that the clickStack is the correct value, since the clickLoc is relative to the
upper left corner of the clickStack.
click, clickChunk, clickField, clickH, clickLine, clickLoc, clickStack, clickText,
mouse, mouseH, mouseLoc, mouseV, select
clipboard

the clipboard or clipboard()

 105#204

The clipboard returns the type of the information on the clipboard.
copy, cut, paste
colorNames

the colorNames or colorNames()
The colorNames function returns a list of the color names known to the MetaTalk
interpreter. You can use this function to determine whether MetaCard will be able to
convert a given string into its RGB equivalent.
commandNames, foregroundColor, functionNames, propertyNames, htmlText
commandKey

the commandKey or commandKey()
Returns "up" or "down" depending on the position of the keyboard Control key on
UNIX and Windows systems, and the Command (cloverleaf) key on MacOS. This
function is the same as the controlKey function on UNIX and Windows systems.
The name of this function can be abbreviated as cmdKey.
altKey, capsLockKey, click, commandKeyDown, controlKey, drag, extendKey,
keysDown, metaKey, optionKey, rawKeyDown, shiftKey, mouse, type
commandNames

the commandNames or commandNames()
The commandNames function returns a list of the commands known to the MetaTalk
interpreter. You can use this function to determine whether or not a handler name
you are planning to use is already defined:
put "somename" is in the commandNames

colorNames, customKeys, functionNames, keys, propertyNames
compound

compound(<rate>, <periods>)
The compound function returns the present or future value of a compound interest
bearing account. The two parameters are expressions that specify the rate and the
number of periods, respectively.
annuity, exp
compress

compress(<exp>)
The compress function returns the string passed in <exp> compressed in the gzip
format (RFC 1952). The degree of compression depends on the source string, but

 106#204

ranges from a growth of 1% for already compressed data to a reduction to 1% or less
of original size. A reduction of approximately 3 to 1 is typical.
base64Encode, charToNum, convert, decompress, load, md5Digest, put, open,
toLower, urlEncode, write
controlKey

the controlKey or controlKey()
Returns "up" or "down" depending on the position of the keyboard "Control" key.
The message commandKeyDown is sent when another key is pressed while holding
down the Control key. This function is the same as the commandKey function on
UNIX and Windows systems, but returns the state of the control key on the Mac.
altKey, commandKey, controlKeyDown, metaKey, optionKey, rawKeyDown,
shiftKey, mouse
copyResource

copyResource(<source>, <dest>, <type>, <name>[, <newid>])
This function, which is only available on MacOS systems, copies a resource from file
<source> to file <dest>. The resource is specified by <type> and <name>, where
<name> can be either the name of the resource or its id. The optional <newid>
argument is the id that will be given to the resource in the <dest> file. If no <newid>
is supplied, the id of the resource in the <source> file will be used.
copy, deleteResource, getResources, hideConsoleWindows, open, platform
cos

cos(<expression>)
Returns the cosine of a numeric expression (in radians). To convert to degrees,
multiply by 180 and divide by the constant pi.
acos, asin, atan, atan2, Constants, numberFormat, put, sin, tan
date

the [long | abbreviated | short | internet] [system] date or date()
The date function returns the date according to the system clock. The modifier is
optional and must be one of long, abbreviated, short, or internet. If omitted, the short
date is returned. The optional modifier system can be supplied which will return the
date using the language and item order specified by the date control panel or locale
environment variable.
The long date returns dates of the form: Monday, April 1, 1992
The abbreviated (or abbrev or abbr) form is: Mon, Apr 1, 1992

 107#204

The short form is: 4/1/92
The internet form is: Mon, 1 Apr 1992 15:55:21 -0700
centuryCutoff, convert, Operators, monthNames, seconds, time, useSystemDate,
weekDayNames
decompress

decompress(<exp>)
The decompress function returns the string passed in <exp> decompressed from the
gzip format (RFC 1952).
base64Decode, charToNum, compress, convert, put, open, toUpper, urlDecode, write
deleteResource

deleteResource(<path>, <type>, <name>)
This function, which is only available on MacOS systems, deletes a resource from
the file specified by <path>. The resource is specified by <type> and <name>, where
<name> can be either the name of the resource or its id.
copyResource, delete, deleteKey, getResources
directories

the [detailed] directories or directories()
Returns the subdirectories of the current directory as a return separated list. The
detailed directories returns additional information on each directory as described for
the detailed files.
directory, dontUseNS, drives, files, filter, open, rename, secureMode, there
drives

the drives or drives()
Returns the drives/volumes available on the current system. This function can also be
called as "the volumes".
directories, directory, dontUseNS, files, filter, open, platform, rename, secureMode,
there
environment

the environment or environment()
This function returns information about the current run time environment. It can be
"MetaCard Development", "MetaCard Helper Application", "MetaCard Player", or
"MetaCard Plug-in".
address, emacsKeyBindings, licensed, lookAndFeel, kill, machine, platform, shell,

 108#204

screenVendor, shellCommand, signal, sysError, systemVersion, version
errorObject

the errorObject or errorObject()
This function returns the name of the object who's script had an execution error in it.
It is used by the Execution Error stack and the Script Editor stack to determine which
object's script to edit.
edit, editScript, errorDialog, executionError, lock, me, select, selectedObject, target
exists

exists(<object>)
This function returns true if the specified object exists, and false otherwise. It is an
alternate form of the there operator and can also be called existence.
cardNames, rect, layer, loc, Operators, owner
exp

exp(<expression>)
This function returns e to the power of the expression.
baseConvert, exp1, exp10, exp2, ln, ln1, log2, log10, Operators
exp1

exp1(<expression>)
This function returns e to the power of the expression - 1.
baseConvert, exp, exp10, exp2, ln, ln1, log2, log10, Operators
exp10

exp10(<expression>)
This function returns 10 to the power of the expression.
baseConvert, exp, exp1, exp2, ln, ln1, log2, log10, Operators
exp2

exp2(<expression>)
This function returns 2 to the power of the expression.
baseConvert, exp, exp1, exp10, ln, ln1, log2, log10
extents

extents(<a>)

 109#204

This function returns the dimensions of a numerically indexed array as a comma-
delimited pair of numbers. The first number is the lowest numbered element with
data in it, the second is the highest. If the array has multiple dimensions, the extents
of each dimension will be returned on a separate line.
average, keys, matrixMultiply, max, median, sum, transpose
files

the [detailed] files or files()
Returns the names of the files in the current directory as a return separated list. The
detailed files returns a comma-delimited list of the attributes for each file in the
following order:
urlEncoded file name
size in bytes
size in bytes of the resource fork (MacOS)
creation date in seconds (Win32 and MacOS)
modification date in seconds
access date in seconds (Win32 and UNIX)
backup date in seconds (MacOS)
owner user id (UNIX)
owner group id (UNIX)
file permissions in octal
creator code and file type (MacOS)
If an attribute is not supported on the current platform, that item will be empty.
aliasReference, create, directories, directory, dontUseNS, drives, files, fileType,
filter, open, rename, secureMode, stackFileType, there, umask, urlEncode
flushEvents

flushEvents(<types>)
The flushEvents function removes events from MetaCard's input event queue,
preventing them from being generating script messages. The <types> can be one or
more of all, mouseDown, mouseUp, keyDown, keyUp, autoKey, disk, activate,
highLevel, system. Some of these messages are not available on all platforms. This
function is most useful when suppressing button double clicks in navigation controls,
but must be used with caution because it can disrupt the normal operation of buttons
and fields.
on mouseUp

 110#204

go to next card

get flushEvents("mouseDown, mouseUp")

end mouseUp

keyDown, keysDown, keyUp, lockMessages, mouseDown, mouseUp,
pendingMessages
focusedObject

the focusedObject or focusedObject()
This function returns the long id of the object in the defaultStack that currently has
the keyboard focus.
focus, focusIn, select, type
fontNames

the fontNames or fontNames()
This function returns a return separated list of the font names (faces) available on the
current system.
fontSizes, fontStyles, textFont
fontSizes

fontSizes(<facename>)
This function returns a return separated list of the font sizes available in the type face
<facename> on the current system. The <facename> should be one of the names
returned from the fontNames function. If a 0 is one of the elements of the list, the
font can be scaled to any size.
fontNames, fontStyles, textFont
fontStyles

fontStyles(<facename>, <size>)
This function returns a return separated list of the font styles available in the type
face <facename> and size <size> on the current system. The <facename> should be
one of the names returned from the fontNames function, and the size from the
fontSizes function.
fontNames, fontSizes, textFont
format

format(<expression> [, value 1, value 2...])
Format takes a format string and zero or more values and returns a string combining
them. The format string has the same syntax as that use for the C language printf

 111#204

function:
write format("Answer was %5d\n", 5) to stdout

In this example %5d means to print out the first value as a decimal number padded
with spaces to be 5 characters long. The "\n" means to append a newline character,
which is equivalent to the MetaCard constant return.
The format function understands %s for strings, %d and %u for integers, %o and %x
for octal and hexadecimal numbers, %f and %g for floating point numbers, %e and
%E for scientific notation, and %c for characters. Optional field width and precision
parameters are also supported:
put format("%12.4e", 100/3) into field 1

In this example, the 12 specifies that the returned string should be 12 characters long,
padded with spaces as needed. The 4 specifies that there should be 4 digits after the
decimal point in the returned string (the resulting string is " 3.3333e+01").
The format function translates the following escape sequences to their single
character equivalents:
\a (alert or bell)
\b (backspace)
\f (formfeed)
\n (newline or line feed)
\r (carriage return)
\t (horizontal tab)
\v (vertical tab)
\\ (\ character itself)
\? (question mark)
\' (single quote)
\" (double quote)
\ooo (octal number)
\xhh (hexidecimal number)
baseConvert, binaryEncode, convertOctals, formattedWidth, htmlText, matchChunk,
matchText, md5Digest, numberFormat, numToChar, Operators, put, replace,
tabStops, write
foundChunk

the foundChunk or foundChunk()
The foundChunk function returns a chunk expression that describes the foundText.

 112#204

The string is of the form "char x to y of field z" where x, y, and z are integers.
clickChunk, find, foundField, foundLine, foundLoc, foundText, matchChunk,
matchText, mouseChunk, selectedChunk
foundField

the foundField or foundField()
Returns the name (or id if no name) of the field the last find command found the
foundText in.
clickField, find, foundChunk, foundLine, foundLoc, foundText, mouseControl,
selectedField
foundLine

the foundLine or foundLine()
The foundLine function returns a chunk expression that describes the foundText.
The string is of the form "line x of field y" where x and y are integers.
clickLine, find, foundChunk, foundField, foundLoc, foundText, selectedLine
foundLoc

the foundLoc or foundLoc()
The foundLoc function returns the x, y coordinate of the topLeft corner of the box
around the foundChunk.
clickLoc, find, foundChunk, foundField, foundLine, foundText, selectedLoc
foundText

the foundText or foundText()
The foundText function returns the text matched by the last find command. Since the
find command may only match parts of words, sometimes it is useful to be able to
determine the whole word boxed as the result of a find command.
clickText, find, foundChunk, foundField, foundLine, foundLoc, matchText,
mouseText, selectedText
frontScripts

the frontScripts or frontScripts()
The frontScripts function returns a list of the objects that will receive messages
before the target receives them.
backScripts, editScript, insert, libraryStack, remove, script, start
functionNames

 113#204

the functionNames or functionNames()
The functionNames function returns a list of the functions known to the MetaTalk
interpreter. You can use this function to determine whether or not a function handler
name you are planning to use is already defined:
put "somename" is in the functionNames

colorNames, commandNames, customKeys, keys, propertyNames, variableNames
getResources

getResources(<path>[, <type>])
This function, which is only available on MacOS systems, returns a list of the
resource in file <path>. The optional <type> argument causes the function to only
return information on that type of resource. Information on each resources is returned
in 4 items on a line: name, id, type, and size.
copyResource, deleteResource, open, platform
globalLoc

globalLoc(<point>)
This function translates a point in a local coordinate system (0, 0 is the upper-left
corner of a stack) to the global coordinate system (0, 0 is the upper-left corner of the
main monitor). It uses the topLeft of the defaultStack as the reference point.
localLoc, mouse, mouseChunk, mouseClick, mouseControl, mouseH, mouseLoc,
mouseMove, mouseStack, mouseText, mouseV, mouseWithin, screenRect,
screenMouseLoc, selectedLoc, topLeft
globalNames

the globalNames or globalNames()
Returns a comma separated list of the global variables. This is primarily useful for
debugging a script that may be setting an unknown global variable.
explicitVariables, global, local, localNames, variableNames
hostAddress

hostAddress(<sock>)
This function returns the IP address of the local host being used by a socket. Note
that the socket <sock> must be connected, which means that an open, read, or write
command on that socket must have been completed.
accept, hostName, hostNameToAddress, open, openSockets, peerAddress
hostAddressToName

 114#204

hostAddressToName(<addr>)
This function does a DNS lookup on the IP address <addr> and returns the
corresponding host name.
accept, hostName, hostNameToAddress, open, openSockets
hostName

the hostName or hostName()
This function returns the domain name of the current host.
accept, hostAddressToName, hostNameToAddress, open, openSockets
hostNameToAddress

hostNameToAddress(<addr>)
This function does a DNS lookup on the name specified in <addr> and returns the
corresponding IP address. If more than 1 IP address is available for that name, they
are returned on separate lines.
accept, hostAddress, hostAddressToName, hostName, open, openSockets
interrupt

the interrupt or interrupt()
This function returns true if the user pressed the interrupt key (control-. or control-
break) while the allowInterrupts property was set to false.
allowInterrupts, cantModify, lock
intersect

intersect(<object 1>, <object 2>)
This function returns true if the rect properties of the two objects intersect and false
otherwise.
intersect(C), rect, layer, loc, Operators, owner, selectionMode, within
isNumber

isNumber(<chunk>)
This function returns true if <chunk> evaluates to a number and false otherwise. It is
provided for backward compatibility with SuperCard, and the "is a number"
validation operator should be used for all new development.
Operators
isoToMac

 115#204

isoToMac(<string>)
This function translates all the characters in <string> from the ISO 8859-1 character
set to the MacOS character set.
baseConvert, binaryDecode, charset, charToNum, compress, macToISO,
numToChar, platform, toLower, toUpper, uniEncode, urlEncode
itemOffset

itemOffset(<part>, <whole> [, <skip>])
This function returns the number of the item where string <part> is found within
string <whole>. If the part string does not appear within the whole, zero is returned.
If the optional third parameter <skip> is included, it specifies a number of items to
skip before beginning the search. If it is omitted, it is set to 0. Remember to add the
skip value to the value returned from offset to find the true item offset within the
whole string.
caseSensitive, itemDelimiter, lineOffset, offset, Operators, matchChunk, matchText,
put, switch, wholeMatches, wordOffset
keys

keys(<variable>)
The keys function returns a list of the elements that have been set in a variable used
as an associative array. See the container card in the Concepts & Techniques
stack for more information on variables.
commandNames, customKeys, customPropertySets, delete, extents, functionNames,
properties, propertyNames, set, variableNames
keysDown

the keysDown or keysDown()
This function returns a comma-delimited list of keys on the keyboard that are
currently pressed down. Each item is the KeySym of the key, the same value that is
passed as a parameter with the rawKeyDown and rawKeyUp messages.
altKey, commandKey, keyDown, flushEvents, keyUp, lockMessages, mouse,
mouseDown, mouseUp, pendingMessages
length

the length or length()
The length of a string is the number of characters in the string. The following two
statements are equivalent:
put the length of "abcde"

 116#204

put the number of characters in "abcde"

The "number" method is more general since it can be used with any chunk units.
Operators, number, offset
licensed

the licensed or licensed()
This function returns true if a licensed Home stack has been loaded and false if
otherwise. If no Home stack or an unlicensed Home stack has been loaded, the
setting and executing scripts is subject to the length limits specified in the
scriptLimits property.
environment, lookAndFeel, platform, save, scriptLimits, script
lineOffset

lineOffset(<part>, <whole> [, <skip>])
This function returns the number of the line where string <part> is found within
string <whole>. If the part string does not appear within the whole, zero is returned.
If the optional third parameter <skip> is included, it specifies a number of lines to
skip before beginning the search. If it is omitted, it is set to 0. Remember to add the
skip value to the value returned from offset to find the true line offset within the
whole string.
caseSensitive, itemOffset, offset, Operators, matchChunk, matchText, put, switch,
wholeMatches, wordOffset
ln

ln(<expression>)
This function returns the natural (base e) logarithm of a number specified in
<expression>.
baseConvert, exp, exp1, exp10, exp2, ln1, log2, log10, Operators
ln1

ln1(<expression>)
This function returns ln (expression + 1)
baseConvert, exp, exp1, exp10, exp2, ln, log2, log10, Operators
localLoc

localLoc(<point>)
This function translates a point in the global coordinate system (0, 0 is the upper-left
corner of the main monitor) to a local coordinate system (0, 0 is the upper-left corner

 117#204

of a stack). It uses the topLeft of the defaultStack as the reference point.
globalLoc, mouse, mouseChunk, mouseClick, mouseControl, mouseH, mouseLoc,
mouseMove, mouseStack, mouseText, mouseV, mouseWithin, screenMouseLoc,
selectedLoc, topLeft
localNames

the localNames or localNames()
Returns a comma separated list of the local variables. This is primarily useful for
debugging a script that may be setting an unknown local variable.
constant, explicitVariables, functionNames, global, globalNames, local,
variableNames
log10

log10(<expression>)
This function returns the log base 10 of a number specified in <expression>.
baseConvert, exp, exp1, exp10, exp2, ln, ln1, log2, Operators
log2

log2(<expression>)
This function returns the log base 2 of a number specified in <expression>.
baseConvert, exp, exp1, exp10, exp2, ln, ln1, log10, Operators
longFilePath

longFilePath(<f>)
This function returns the long file path corresponding to the short file path <f> on
Win32 systems. A short file path is in the DOS-standard 8.3 format, and is most
likely to be encountered as the fileName property of a stack that was passed on the
command line. This function returns <f> on the other platforms, or if <f> already is a
long file path.
alternateLanguages, charset, dontUseNS, dontUseQT, drives, environment, charset,
files, fileType, hideConsoleWindows, longFilePath, machine, macToISO, platform,
queryRegistry, shell, shellCommand, sysError, systemFileSelector, systemVersion
machine

the machine or machine()
This function returns the CPU type of the machine MetaCard is running on.
environment, platform, systemVersion, version
macToISO

 118#204

macToISO(<string>)
This function translates all the characters in <string> from the MacOS character set
to the ISO 8859-1 character set.
baseConvert, charset, charToNum, compress, isoToMac, numToChar, platform,
toLower, toUpper, uniEncode, urlEncode, write
mainStacks

the mainStacks or mainStacks()
This function returns a list of the currently loaded main stacks. A stack file on disk
has one main stack, which is the stack opened when the stack is loaded, and zero or
more substacks. Substacks are generally used to implement dialog boxes, floating
palettes, and menus. See the mainStack and substacks property descriptions for
more details.
backdrop, defaultStack, mainStack, mode, openStacks, start, substacks, topStack
matchChunk

matchChunk(<source>, <regex>[, <output 1>, <output 2> ...])
The matchChunk function returns true or false depending on whether expression
<source> matches a regular expression pattern <regex> Optional output parameters,
which must be variables and included in pairs, can be used to return the start and end
character positions of matched substrings. For example, here is the example given for
the matchText function, but adapted to return chunks instead of matched text:
local nameStart, nameEnd

local addressStart, addressEnd

put "From: John Doe <jdoe@somewhere.org>" \

into source

if matchChunk(source, \

"^From: (.*) <(.+@.+)>", \

nameStart, nameEnd,\

addressStart, addressEnd)

then put "Name starts at char" && nameStart

Be sure to declare the destination variables before the matchChunk function using
the local command as they won't be created automatically as they are with
commands like put.
filter, format, lineOffset, matchText, offset, Operators, wholeMatches
matchText

 119#204

matchText(<source>, <regex>[, <output 1>, <output 2> ...])
The matchText function returns true or false depending on whether expression
<source> matches a regular expression pattern <regex>. Optional output parameters,
which must be variables, can be used to return matched substrings which are
enclosed in parentheses in the pattern.
local userName, userAddress

put "From: John Doe <jdoe@somewhere.org>" \

into source

if matchText(source, \

"^From: (.*) <(.+@.+)>", \

userName, userAddress)

then put "found user name" && userName

In this example, the matchText function returns true. The first group (.*) matches the
substring "John Doe" and the second match matches the substring
"jdoe@somewhere.org". These matched substrings are put into the variables
"username" and "useraddress" respectively. Be sure to declare the variables before
the matchText function using the local command as they won't be created
automatically as they are with commands like put.
The following special characters can be used in the regex pattern:
. matches any character
^ forces match to be at beginning of string
$ forces match to be at end of string
[chars] matches any of the characters in the set of chars. The characters can be
either characters allowed to match, or if ^ is the first character in chars, not allowed
to match. You can specify a range of characters by putting a - between them. For
example [a-z] matches any lower case alphabetic character.
(exp) matches the expression, and puts result in a variable
* matches zero or more of the preceding special character
+ matches one or more of the preceding special character
? matches zero or more of the same characters matched by the previous special
character
regex 1 | regex 2 matches either regular expression
You can force a literal match of any of these special characters by preceding them
with a \ character (use \\ to match the backslash character). So, for example, the
regular expression "test$" will match the word "test" only at the end of a line, where
"test\$" will match the string "test$" anywhere in the input.

 120#204

caseSensitive, filter, find, format, lineOffset, matchChunk, offset, Operators, replace,
replaceText
matrixMultiply

matrixMuliply(<a1>, <a2>)
This function performs a matrix multiplication of two numerically indexed arrays
<a1> and <a2> and returns a new array. The number of rows in <a1> must match the
number of columns in <a2>.
add, divide, extents, max, median, min, multiply, Operators, round, statRound,
standardDeviation, sum, transpose
max

max(<list>)
The max function finds the biggest number in a comma-separated list of expressions
or the elements in an array variable. If, for example, field "Items" had "1, 4, 7, 3" in
it:
put max(field "Items")

would put 7 into the Message Box.
add, average, median, min, Operators, round, standardDeviation
mciSendString

mciSendString(<MCI command>)
This function, only available on Windows 95 and Windows NT, sends a string to the
Microsoft Media Control Interface system. It can be used to control devices such as
video digitizers, laser disks, and other multimedia input and output devices.
Documentation on the device name and supported commands should be available
from the device manufacturer.
The function return value will be the string returned from the MCI system. The
result function will contain details of any error, or will be empty if there was no
error.
dontRefresh, play, result, shell, templateVideoClip
md5Digest

md5Digest(<exp>)
This function computes a 128-bit (16 character) digest of the data in <exp>. It can be
used to determine if a large value has changed without having to retain a backup
copy of that value. Note that the returned value is a binary value, and will need to be
converted to some other form if it must be viewed as text. A common technique is to
convert it to a hexidecimal string with the binaryDecode function:

 121#204

local tHexDigest

get binaryDecode("H*", md5digest(myvar), tHexDigest)

base64Encode, baseConvert, binaryDecode, compress, format, numToChar,
urlEncode
menuButton

the menuButton or menuButton()
This function can be used to determine which button has been used to open a menu
panel. It is most useful when implementing option menus where the menu panel may
need to display different contents depending on which button opened it.
The most common use of this function in previous versions of MetaCard, was setting
the label property of an option menu button, it is no longer relevant however since
the menu panel will do this automatically in newer releases.
errorObject, selectedObject, me, mainStack, menubar, menuMouseButton,
menuName, target
merge

merge(<expression>)
The merge function finds delimited expressions in a string and evaluates them,
replacing the expresion with this value. It supports both expressions, which are
delimited by [[and]], and commands which are delimited by <? and ?>. Note that
you must explicitly return a value with a return keyword for the latter type:
put merge("3 + 5 is [[3 + 5]] and 2 + 2 is <?return 2 +
2?>")

alternateLanguages, call, do, Functions, me, Operators, request, send, value
me

me
This function can be used to get properties of the object whose script is currently
running. Note that for this function, neither the word "the" nor parentheses are
required.
A common mistake made with this function and the target function is to forget that
the value returned includes the type of the object:
put me -- returns the contents of field

put the name of me -- returns <field "name">

put the short name of me -- returns <"name">

editScript, errorObject, selectedObject, target, value

 122#204

median

median(<list>)
This function compute the median of a comma separated list of expressions or the
elements in an array variable. For example:
put average(1,2,3,4)

would put 2.5 into the Message Box.
The list could also be a single container. For example
put "1, 2, 3, 4" into somevar

put average(somevar)

would also put 2.5 into the Message Box.
add, average, divide, extents, max, median, min, Operators, round, statRound,
standardDeviation, sum
metaKey

the metaKey or metaKey()
Returns "up" or "down" depending on the position of the keyboard "Alt" key. This
function is the same as the optionKey function.
altKey, commandKey, extendKey, keysDown, optionKey, shiftKey, mouse
milliseconds

the milliseconds or milliseconds()
Returns the milliseconds from some arbitrary time in the past. This function is most
useful in pairs:
put the milliseconds into startTime

wait until the mouse is down

put "That took" && the milliseconds - startTime\

&& "milliseconds"

effectRate, idleRate, seconds, send, ticks, wait
min

min(<list>)
The min function finds the smallest number in a comma separated list of expressions
or the elements in an array variable. If, for example, field "Items" had "7, 1, 4, 3" in
it:
put min(field "Items")

 123#204

would put 1 into the Message Box.
average, max, median, Operators, round
monthNames

the [long | abbreviated | short] [system] monthNames or monthNames()
This function returns a return-delimited list of the month names in English or, if the
"system" parameter is supplied, the language specified for dates in the system control
panel or locale environment variable.
centuryCutoff, convert, date, Operators, platform, seconds, time, useSystemDate,
weekDayNames
mouse

the mouse or mouse([<button>])
Returns "up" or "down" depending on the state of mouse. If you don't specify a
button, MetaCard checks the state of mouse button 1. Otherwise it checks the state of
the specified button (1, 2, or 3, corresponding to left, middle, and right on most
Windows and UNIX systems).
A good general rule is to never use this function because it will disrupt the normal
functioning of button hilites and other automatic operations. Instead, handle the
mouseDown, mouseUp, and mouseRelease messages.
click, clickLoc, commandKey, grab, keysDown, mouseChunk, mouseClick,
mouseColor, mouseDown, mouseLoc, mouseMove, mouseRelease, mouseText,
optionKey, rawKeyDown, screenMouseLoc, shiftKey, wait
mouseChar

the mouseChar or mouseChar()
The mouseChar function returns the character under the mouse cursor.
clickField, clickH, clickLine, clickLoc, clickText, clickV, foundChunk, hilitedLines,
listBehavior, mouseChunk, mouseLine, mouseLoc, mouseText, selectedChunk,
textStyle
mouseCharChunk

the mouseCharChunk or mouseCharChunk()
The mouseCharChunk function returns a chunk expression that describes the
mouseChar. The string is of the form "char x to y of field z" where x, y, and z are
integers and x = y.
clickField, clickH, clickLine, clickLoc, clickText, clickV, foundChunk, hilitedLines,
listBehavior, mouseLine, mouseLoc, mouseText, selectedChunk, textStyle

 124#204

mouseChunk

the mouseChunk or mouseChunk()
The mouseChunk function returns a chunk expression that describes the
mouseText. The string is of the form "char x to y of field z" where x, y, and z are
integers.
clickField, clickH, clickLine, clickLoc, clickText, clickV, foundChunk, hilitedLines,
listBehavior, mouseCharChunk, mouseLoc, mouseText, selectedChunk, textStyle
mouseClick

the mouseClick or mouseClick()
This function returns true if mouse button 1 is has been pressed and released since
the event that led to the current handler being executed was sent.
A good general rule is to never use this function because it will disrupt the normal
functioning of button hilites and other automatic operations. Instead, handle the
mouseDown, mouseUp, and mouseRelease messages.
clickLoc, commandKey, optionKey, shiftKey, mouse, mouseLoc, wait
mouseColor

the mouseColor
Returns the color of the pixel the mouse is over as an RGB triplet.
clickChunk, clickText, clickV, colormap, cursor, foundText, globalLoc, hide,
localLoc, mouseChar, mouseChunk, mouseLoc, mouseUp, mouseStack,
screenMouseLoc, selectedText, textColor, tool
mouseControl

the mouseControl or mouseControl()
The mouseControl function returns the layer of the control that has the mouse
pointer within it. When the mouse wheel is turned on a Windows system, a
rawKeyDown message is sent to the mouseControl.
clickField, clickStack, defaultStack, mouseColor, mouseEnter, mouseLeave,
mouseLine, mouseLoc, mouseMove, mouseStack, rawKeyDown, screenMouseLoc,
selectedField, topStack
mouseH

the mouseH or mouseH()
Returns the current x coordinate of the mouse cursor relative to the top left corner of
the defaultStack.

 125#204

clickLoc, foundLoc, mouse, mouseClick, mouseH, mouseLoc, mouseMove,
mouseStack, mouseV, mouseWithin, screenMouseLoc, screenRect, selectedLoc
mouseLine

the mouseLine or mouseLine()
The mouseLine function returns a chunk expression that describes the line of text
that the mouse cursor is positioned over. The string is of the form "line x of field y"
where x and y are integers.
clickLoc, foundLoc, hilitedLines, mouse, mouseClick, mouseH, mouseLoc,
mouseMove, mouseStack, mouseV, mouseWithin, screenMouseLoc, selectedLoc
mouseLoc

the mouseLoc or mouseLoc()
Returns the current x, y coordinates of the mouse cursor relative to the top left corner
of the defaultStack. It's generally more efficient to use the mouseMove message
and save the x,y coordinates of the mouse than to call this in a loop. This function
can also disrupt the normal operation of automatic features like button hilite
tracking.
Note that you can't set the mouseLoc, because it is a function. You can, however, set
the screenMouseLoc.
clickLoc, cursor, foundLoc, globalLoc, localLoc, mouse, mouseChunk, mouseClick,
mouseColor, mouseControl, mouseH, mouseStack, mouseText, mouseV,
mouseWithin, rawKeyDown, selectedLoc
mouseStack

the mouseStack or mouseStack()
The mouseStack function returns the name of the stack that has the mouse pointer
within it.
clickStack, defaultStack, intersect, mouseColor, mouseControl, mouseEnter,
mouseLeave, mouseLoc, screenMouseLoc, topStack, within
mouseText

the mouseText or mouseText()
The mouseText function returns the word under the mouse cursor.
cantModify, click, clickChunk, clickField, clickH, clickLine, clickLoc, clickText,
clickV, foundText, hide, mouseChar, mouseChunk, mouseColor, mouseLine,
mouseLoc, mouseUp, selectedText, textStyle
mouseV

 126#204

the mouseV or mouseV()
Returns the current y coordinate of the mouse cursor relative to the top left corner of
the defaultStack.
clickLoc, foundLoc, mouse, mouseClick, mouseH, mouseLoc, mouseStack,
mouseWithin, screenMouseLoc, selectedLoc
movie

the movie or movie()
This function returns a list of the names of the currently playing videoClip objects, or
"done" if no movie is playing.
beep, movingControls, dontRefresh, play, playStopped, sound, stop,
videoClipPlayer, wait
movingControls

the movingControls or movingControls()
Returns a list of the controls that are currently moving. Use the move command to
start the controls moving.
move, moveStopped, movie, stacksInUse, stop
numToChar

numToChar(<expression>)
This function returns the character corresponding to the number supplied in the
current character set.
baseConvert, charToNum, extendKey, format, isoToMac, md5Digest, replace,
toLower, toUpper, uniEncode, urlEncode
offset

offset(<part>, <whole> [, <skip>])
This function returns the character offset where string <part> is found within string
<whole>. If the part string does not appear within the whole, zero is returned. For
example, these statements delete a word from a field:
put offset("text", field "Source") into tOffset

delete char tOffset to tOffset \

+ length("text") of field "Source"

If the optional third parameter <skip> is included, it specifies an offset within the
string <whole> to begin the search. If it is omitted, it is set to 0. Remember to add
the skip value to the value returned from offset to find the true offset within the
string <whole>.

 127#204

itemOffset, lineOffset, Operators, chunk, matchText, put, wordOffset
openFiles

the openFiles or openFiles()
This function returns a return separated list of the currently open files. You can use
this function in an error handler that will close files left open elsewhere in your
scripts:
repeat while the openFiles is not empty

close file line 1 of the openFiles

end repeat

close, kill, open, openProcesses, openSockets
openProcesses

the openProcesses or openProcesses()
This function returns a return separated list of the currently open processes. You can
use this function to determine which processes should have an action performed on
them. For example this script might notify a series of processes that maintain locks
on some system resource that the status has changed:
put the number of lines in (the openProcesses)\

into nlines

repeat with i = 1 to nlines

if line i of the openProcesses contains "lock"

then kill USR1 process line i of the openProcesses

end repeat

close, kill, launch, open, openFiles, openProcessIds, openSockets, processId, signal
openProcessIds

the openProcessIds or openProcessIds()
This function returns a return separated list of the ids of the currently open processes.
They are returned in the same order as the process names in the openProcesses. For
example, the script on the openProcesses card could be modified to use the shell()
function:
put the number of lines in the openProcessIds\

into nlines

repeat with i = 1 to nlines

if line i of the openProcesses contains "lock"

 128#204

then put shell("kill -USR1"\

&& line i of the openProcessIds)\

into dummyvar

end repeat

close, kill, open, openFiles, openProcesses, processId, signal
openSockets

the openSockets or openSockets()
This function returns a list of the currently open sockets.
accept, close, hostAddress, open, openFiles, openProcesses, peerAddress,
socketTimeoutInterval
openStacks

the openStacks or openStacks()
This function returns a return separated list of the currently open stacks. You find out
how these stacks were opened with mode property, and whether or not they are
iconified with the iconic property.
backdrop, close, defaultStack, iconic, mainStack, mainStacks, mode, open, quit,
stacks, substacks, topStack, visible
optionKey

the optionKey or optionKey()
Returns "up" or "down" depending on the position of the keyboard "Alt" key. This
function is the same as the altKey and metaKey functions.
altKey, click, extendKey, commandKey, drag, keysDown, metaKey, shiftKey,
mouse, type
param

param(<expression>)
This function returns a parameter by number, 1 being the first parameter. param(0)
returns the name of the current handler.
Most handlers will have their parameters defined by name. The exception will be
those handlers that have a variable number of parameters passed to them. In these
cases, the param function can be used to access the parameters by position. For
example, the following two handlers are equivalent:
on noparams

put param(1) into x

 129#204

put param(2) into y

put x && y

end noparams

on twoparams x, y

put x && y

end twoparams

average, Messages, paramCount, params, send
paramCount

the paramCount or paramCount()
This function returns the number of parameters passed to a handler. The individual
parameters can be retrieved with the param function.
average, Handlers, param, params, send
params

the params or params()
The params function returns a comma separated list of all of the params passed to a
handler. The first param is the message name and the parameters are enclosed in
quotes. For example the params of a mouseUp handler might return:
mouseUp "1"

param, paramCount, send
peerAddress

peerAddress(<sock>)
This function returns the IP address of the remote host to which a socket is
connected.
accept, hostAddress, hostName, hostNameToAddress, open, openSockets
pendingMessages

the pendingMessages or pendingMessages()
The pendingMessages returns the list of message that have been added with the send
command that haven't been sent yet. Each message is on a line, and has the id of the
message (which can be supplied to the cancel command), the time (as the long
seconds) when the message should be delivered, the message name, and the name
of the object it should be sent to.
cancel, flushEvents, result, seconds, send, waitDepth
platform

 130#204

the platform or platform()
This function returns a string describing the hardware the current engine is running
on. It is similar to the UNIX "uname" function, but somewhat easier to understand.
This information could be used to send different commands to the shell function
depending on the hardware/OS the engine is running on.
address, alternateLanguages, buildNumber, charset, dontUseNS, dontUseQT, drives,
environment, charset, files, fileType, formatForPrinting, hideConsoleWindows,
longFilePath, lookAndFeel, kill, machine, macToISO, queryRegistry, screenGamma,
screenVendor, secureMode, shell, shellCommand, signal, specialFolderPath,
sysError, systemFileSelector, systemVersion, useSystemDate, version
processId

the processId or processId()
This function returns MetaCard's process id. It can be used to allow a process opened
with open process to send a signal to MetaCard.
close, externals, kill, open, openProcesses, openProcessIds, platform, screenVendor,
signal, windowId
propertyNames

the propertyNames or propertyNames()
The propertyNames function returns a list of the properties known to the MetaTalk
interpreter. You can use this function to determine whether or not a custom property
name you are planning to use is already defined:
put "somename" is in the propertyNames

colorNames, commandNames, customKeys, customProperties, functionNames, keys,
variableNames
qtEffects

the qtEffects or qtEffects()
This function returns a list of the visual effects supported by the QuickTime library
installed on the current system.
answer, buildNumber, environment, lookAndFeel, machine, platform, play,
qtVersion, record, screenVendor, start, systemVersion, version, visual
qtVersion

the qtVersion or qtVersion()
This function returns the version of QuickTime installed on the current system, or
0.0 if QuickTime is not available. It returns a fixed value of "2.0" on UNIX systems.

 131#204

buildNumber, environment, lookAndFeel, machine, platform, play, record,
screenVendor, start, systemVersion, version
queryRegistry

queryRegistry(<key>[, <type>])
This function, which is only available in the Win32 engine, returns the value of the
specified <key> in the system registry. The <key> parameter should be a full path to
the key, beginning with one of the predefined handle values. The optional <type>
parameter is a variable that will contain the type of the data in that registry entry if
the function succeeds.
Key paths ending with the "\" character will query the default value for a key. For
example, to get the default executable for the extension ".mc" on the current system:
put queryRegistry("HKEY_CLASSES_ROOT\.mc\", it) && it

copyResource, hideConsoleWindows, lookAndFeel, lowResolutionTimers, open,
platform, setRegistry, systemFileSelector, systemVersion
recordFormats

the recordFormats or recordFormats()
This function returns a list of the audio codecs that the version of QuickTime
installed on the current system supports. Each line contains the common name of the
codec and the QT 4 character code that can be supplied to the record command.
buildNumber, paintCompression, play, qtEffects, qtVersion, recordLoudness, start,
systemVersion, version, visual
recordLoudness

the recordLoudness or recordLoudness()
This function uses QuickTime to determine the strength of the signal at the current
recording input.
buildNumber, environment, lookAndFeel, machine, platform, play, qtEffects,
qtVersion, record, recordFormats, screenVendor, start, systemVersion, version,
visual
replaceText

replaceText(<source>, <regex>, <replacement>)
This function replaces all occurrences in string <source> of a pattern specified by
<regex> with the text in <replacement> and returns that string. For example, the
following statement will put "xesx" into the Message Box:
put replaceText("test", "t", "x")

 132#204

The parameter <regex> can be any regular expression, as defined in the matchText
function. Note that this means if you want to replace any character with special
meaning in a regular expression pattern (. + * | ? () [] $ ^ \), you must escape that
character by preceding it with a \ character (see the replace command for a faster
and easier method for substituting characters).
For example, to replace the periods in a number with commas, you must escape the
"." character in the regular expression pattern:
put replacetext("1.0", "\.", ",")# returns 1,0

caseSensitive, filter, find, format, lineOffset, matchText, offset, Operators, replace
random

random(<maxvalue>)
The random function returns a positive integer between 1 and <maxvalue> (which
itself must be a positive integer).
When trying to select a random object or chunk, the word "any" can also be used to
achieve random selections:
put any line of field 1 into somevariable

abs, Operators, randomSeed, round, sort, trunc
result

the result or result()
Returns a string describing the status of the last find, go, open, send, or file operation
command. If the operation was successful, the result returns empty. Otherwise an
error occurred. Since many operations can set the result, you should check it
immediately after any statement that may set it.
The result function can also be used to retrieve a value returned from a message
handler. See the return key card for an example. Note that the result is cleared at the
end of a handler, which means that you can't check the result in the Message Box.
The result also contains the id of a message added to the pendingMessages with
the send command.
answer, ask, dialogData, directory, find, mciSendString, open, read, request, send,
shell, sysError, write
round

round(<expression>[, <precision>])
The round function rounds a real number specified by <expression> to the nearest
integer. 0.5 or larger rounds up. To do statistical rounding (as the HyperCard round()
function does), use the statRound function.

 133#204

The optional <precision> argument determines what decimal place the rounding
occurs. The default of 0 rounds at the ones digit. A value of -1 rounds at the 10s
digit, and a value of 1 rounds at the tenths place. For example round(55.55, -1)
returns "60" and round(55.55, 1) returns 55.56.
abs, add, average, max, min, numberFormat, Operators, statRound, trunc
screenColors

the screenColors or screenColors()
Returns the number of color cells (the number of different colors the display can
show at one time) of the current display. This is primarily useful when setting the
colormap property.
colormap, foregroundPixel, platform, privateColors, screenDepth, screenName,
screenRect, screenType, screenVendor
screenDepth

the screenDepth or screenDepth()
Returns the depth of the current display. Given this information certain decisions
about color use become possible. For example, a monochrome screen has a depth of
1, and may require that special icons be displayed.
alwaysBuffer, colormap, dontDither, ink, lockColormap, pixmapId, platform,
privateColors, screenColors, screenGamma, screenName, screenRect, screenType,
screenVendor
screenLoc

the screenLoc or screenLoc()
Returns a point (two comma separated values) defining the center of the current
display.
loc, mouseLoc, platform, rect, screenDepth, screenName, screenRect, screenType,
screenVendor
screenName

the screenName or screenName()
Returns the name of the current display as returned by the XDisplayName call. This
name should be passed after the -d flag to other X applications started up with the
open and shell calls if they are to appear on the same display that MetaCard is
currently running on.
open, platform, screenDepth, screenNoPixmaps, screenRect, screenSharedMemory,
screenType, screenVendor, shell
screenRect

 134#204

the screenRect or screenRect()
Returns a rectangle (four comma separated values) defining the edges of the main
monitor. The first two values are always 0. This function can be used to rescale
dialogs so that they will fit on the screen.
backdrop, globalLoc, mouseLoc, platform, rect, screenDepth, screenGamma,
screenLoc, screenName, screenType, screenVendor, windowBoundingRect
screenType

the screenType or screenType()
Returns a string that describes the colormap allocation capabilities of the current
display. The possible values are StaticGray, GrayScale, StaticColor, PseudoColor,
TrueColor, or DirectColor. StaticGray and StaticColor visuals are fixed which means
that colors selected in MetaCard will always be remapped to the closest available
color. TrueColor and DirectColor visuals are typically 24 (32) bit depth and all
colors can be realized at the same time.
PseudoColor is the most common visual type on 8-bit displays. This visual type
allows applications to define until the colormap is full. On UNIX/X11 systems,
setting the privateColors property when using a PseudoColor display allows
MetaCard to use the full colormap.
On some UNIX/X11 systems, it is possible to select a different visual type using the
-v command line option. The X11 command "xdpyinfo" lists the visuals that are
available on the current display. See the X Window System documentation for more
information on "xdpyinfo" and visual types.
mouseLoc, platform, rect, privateColors, screenDepth, screenName, screenRect,
screenVendor
screenVendor

the screenVendor or screenVendor()
Returns the name of the organization that produced and the release of the current
server on UNIX/X11 systems.
beepPitch, platform, screenDepth, screenName, screenNoPixmaps, screenRect,
screenSharedMemory, screenType, textFont, windowId
scriptLimits

the scriptLimits or scriptLimits()
This function returns the limits on script length in the current environment. The
limits are returned as a four-item list. The elements are, in order, the maximum
number of statements in a scripts that can be set, the number of statements allowed
in a do command, the number of stacks that can be used with start using, and the

 135#204

number of objects that can be added to the message passing hierarchy with insert
script.
If there are no limits, as is the case when running with a licensed Home stack, this
function returns empty.
do, environment, insert, licensed, lookAndFeel, platform, save, script, start
seconds

the [long] seconds or seconds()
Returns the seconds from some arbitrary time in the past. The modifier long can be
supplied which will return the time as a real number which includes fractions of a
second. This function is most useful in pairs:
put the long seconds into startTime

wait until the mouse is down

put "That took" && the long seconds - startTime\

&& "seconds"

convert, effectRate, idleRate, milliseconds, send, ticks, time, wait
selectedButton

the selectedButton of family <fam>
This function returns the currently hilited button in a button family. It is provided for
compatibility with HyperCard. New development should use a group to hold the
radio buttons and the group's hilitedButtonName property to determine which
button is hilited.
family, hilited
selectedChunk

the selectedChunk or selectedChunk()
The selectedChunk function returns a chunk expression that describes the currently
selected text. The string is of the form "char x to y of field z" where x, y, and z are
integers. If there is no selection, y will be 1 less than x, which can be used to
determine the offset of the text insertion cursor.
clickChunk, foundChunk, hilitedLines, select, selectedField, selectedLine,
selectedLoc, selectedText
selectedField

the selectedField or selectedField()
Returns the number of the field that has the keyboard focus.

 136#204

clickField, focus, foundField, mouseControl, select, selectedChunk, selectedLine,
selectedLoc, selectedText
selectedLine

the selectedLine or selectedLine()
The selectedLine function returns a chunk expression that describes the
selectedText. If a single line is selected, the string is of the form "line x of field y"
where x and y are integers. If more than one line is selected, the string is of the form
"line x to y of field z".
clickLine, foundLine, hilitedLines, listBehavior, menuHistory, select,
selectedChunk, selectedField, selectedLoc, selectedText
selectedLoc

the selectedLoc or selectedLoc()
The selectedLoc returns the x, y coordinate of the top left corner of the selection.
clickLoc, foundLoc, select, selectedChunk, selectedField, selectedLine, selectedText
selectedObject

the selectedObject or selectedObject()
This function returns the name(s) of the selected object(s), one per line. This function
is used extensively in the standard interface for the object property dialogs. Another
useful short-cut is to use the pointer tool to select a text field with its lockText
property set and type into the Message Box:
put "some text" into the selectedObject

This function can be abbreviated selObj or selObjs.
edit, editScript, errorObject, focus, me, select, selectedObjectChanged, selected,
selectedField, selectedText, selectGroupedControls, selectionHandleColor,
selectionMode, target
selectedText

selectedText() or the selectedText [of <control>]
The selectedText returns the currently selected text or the constant empty if there is
no selected text. Note that unlike the selection, values can't be stored into the
selectedText. If the optional <control> is specified and it is a field, the text selected
in a listBehavior field is returned. Note that a field will only retain a selection when
it loses the keyboard focus if its listBehavior property is set. If multiple lines are
selected, the selectedText function returns multiple lines.
If <control> is a button, the text returned is the name of the menu item that was
chosen the last time the button was opened as a menu. Note that this function is

 137#204

supported only for compatibility with HyperCard. Using the label or menuHistory
properties is the recommended technique in MetaCard, since you can use the same
name to both get and set the text displayed.
clickText, focus, foundText, hilitedLines, label, listBehavior, menuHistory,
menuMode, select, selectedChunk, selectedLine, selectedLoc, selection,
selectedObject
selection

the selection or selection()
The selection function is similar to the selectedText, the difference is that values can
be stored into the selection, just as for any other container.
accentColor, hiliteColor, selectedObject, selectedText
setRegistry

setRegistry(<key>, <value>[, <type>)
This function, which is only available in the Win32 engine, sets the specified <key>
in the system registry. It returns true if the value was set, and false otherwise.
Extended error information is return in the result.
The <key> parameter should be a full path to the registry entry, beginning with one
of the predefined handle values. The optional <type> parameter creates an entry of
that type. The possible values are "binary", "dword", "dwordlittleendian",
"dwordbigendian", "expandsz", "link", "multisz", "none", "resourcelist", "string",
"sz", with "string" being the default.
Key paths ending with the "\" character will set the default value for a key. For
example, to set the default executable for the extension ".mc" on the current system:
get setRegistry("HKEY_CLASSES_ROOT\.mc\", "MetaCard")

hideConsoleWindows, lookAndFeel, open, platform, queryRegistry, secureMode,
systemFileSelector, systemVersion
shell

shell(<expression>)
The shell function returns the results of executing a shell command. On UNIX
systems, <expression> is any command that would be valid at the command line
prompt of a Bourne shell (but see the shellCommand property if you need to use
another shell). For example, to present a list of all the .txt files in the current
directory:
put shell("ls *.txt") into field "files"

On Win32 systems, <expression> is an MS-DOS command, which can be the name
of another Windows application. The hideConsoleWindows property can be used

 138#204

to hide the console window that opens when a "console" application is run. On NT
systems, the shellCommand can be changed to cmd.exe, a more reliable command
interpreter than the default command.com.
The stdout and the stderr of the process being run are combined, so error messages
may be part of the returned value. The result function can be used to get the exit
code of the process. Note that unlike the open process command, the shell function
blocks until the command has finished executing.
directory, files, filter, format, hideConsoleWindows, kill, launch, matchText,
mciSendString, open, platform, result, screenName, secureMode, send,
shellCommand, sysError, windowId
shiftKey

the shiftKey or shiftKey()
Returns "up" or "down" depending on the position of the keyboard "Shift" key.
click, commandKey, capsLockKey, drag, keysDown, optionKey, mouse, type
shortFilePath

shortFilePath(<f>)
This function returns the short file path corresponding to the long file path <f> on
Win32 systems. A short file path is in the DOS-standard 8.3 format, and is most
likely to be encountered as the fileName property of a stack that was passed on the
command line. This function returns <f> on the other platforms, or if <f> already is a
short file path.
alternateLanguages, charset, dontUseNS, dontUseQT, drives, environment, charset,
files, fileType, hideConsoleWindows, longFilePath, machine, macToISO, platform,
queryRegistry, shell, shellCommand, sysError, systemFileSelector, systemVersion
sin

sin(<expression>)
Returns the sine of a numeric expression (in radians). To convert to degrees, multiply
by 180 and divide by the constant pi.
acos, asin, atan, atan2, Constatns, cos, numberFormat, put, tan
sound

the sound or sound()
This function returns the name of the audioClip that is currently playing, or "done" if
no sound is playing. AudioClips are started using the play command.
beep, movie, play, playStopped, wait

 139#204

specialFolderPath

specialFolderPath(<name>)
This function takes a name as a parameter and returns the path to that folder on the
current system. The supported folder names on MacOS systems are "Apple",
"Desktop", "Control", "Extension", "Fonts", "Preferences", "Temporary", and
"System". On Win32 systems, the supported names are "desktop", "fonts",
"documents", "start", "system", and "temporary". This function is not supported on
UNIX systems.
answer, create, open, platform, tempName
sqrt

sqrt(<expression>)
This function returns the square root of an expression.
baseConvert, exp, ln, Operators
stacks

the stacks or stacks()
This function returns a return separated list of the files where the currently open
stacks are saved. This function is provided for HyperCard compatibility and in most
cases the openStacks returns more useful information.
close, defaultStack, iconic, mainStack, mainStacks, mode, open, openStacks,
substacks, topStack, visible
standardDeviation

standardDeviation(<list>)
This function computes the standard deviation of a comma separated list of
expressions or the elements in an array variable.
add, average, divide, extents, max, median, min, Operators, round, statRound, sum
statRound

statRound(<exp>[, <precision>])
This function performs statistical rounding of a number as is implemented in the
HyperCard round() function. Numbers of the form x.5 are rounded to x when x is
even and x+1 when x is odd.
The optional <precision> argument is described in the round function.
abs, add, average, max, min, numberFormat, Operators, round, sum, trunc
sum

 140#204

sum(<list>)
The sum function sums a comma separated list of expressions or the elements in an
array variable. For example:
put sum(1,2,3,4)

would put 10 into the Message Box.
The list could also be a single container. For example
put "1, 2, 3, 4" into somevar

or
put sum(somevar)

would also put 10 into the Message Box.
add, average, divide, max, median, min, Operators, round, statRound,
standardDeviation, trunc
sysError

the sysError or sysError()
The sysError returns the current value of the system error variable (the errno variable
on UNIX/X11 systems, and GetLastError() on Windows systems). It can be used to
determined the reason for a failure of an open command.
errorDialog, kill, lock, open, platform, result, shell
systemVersion

the systemVersion or systemVersion()
This function returns the version of the operating system.
alternateLanguages, buildNumber, charset, environment, lookAndFeel, machine,
platform, qtVersion, shellCommand, version
tan

tan(<expression>)
Returns the tangent of a numeric expression (in radians). To convert to degrees,
multiply by 180 and divide by the constant pi.
acos, asin, atan, atan2, Constants, cos, numberFormat, put, sin
target

the target or target()
This function can be used to get properties of the object that originally received the
message that started a script executing. Compare with the me function which
accesses the object whose script is currently executing. Note, a common mistake

 141#204

made with this function and the me function is to forget that the value returned
includes the type of the object:
put the target -- returns field "name"
put the short name of me -- returns "name"
backScripts, editScript, errorObject, frontScripts, insert, me, selectedObject, text
templateAudioClip

the templateAudioClip or templateAudioClip()
This function allows setting the properties of the audioClips that will be imported.
templateButton, play, playDestination
templateButton

the templateButton or templateButton()
This function allows setting the properties of the buttons created with the create
command or by dragging with the button tool. For example, instead of having to
create a rectangle button and then change its style with the "Button Properties"
dialog box you can set the templateButton to create a checkBox button directly:
set the style of the templateButton \

to "checkBox"

create button

reset templateButton

choose, create, me, Properties by Name, reset, style, target, templateCard,
templateField, templateGraphic, templateGroup, templateImage, templatePlayer,
templateScrollbar, templateStack
templateCard

the templateCard or templateCard()
This function allows setting the properties of the cards created with the create
command. Note that cards created will also have the backgrounds used on the current
card placed onto them.
create, me, Properties by Name, reset, style, target, templateButton, templateField,
templateGraphic, templateGroup, templateImage, templatePlayer, templateScrollbar,
templateStack
templateEPS

the templateEPS or templateEPS()
This function allows setting the properties of the EPS objects created with the create

 142#204

command or the import command.
create, me, Properties by Name, style, target, templateButton, templateField,
templateGraphic, templateGroup, templateImage, templatePlayer, templateScrollbar,
templateStack
templateField

the templateField or templateField()
This function allows setting the properties of the fields created with the create
command or by dragging with the field tool. For example, instead of creating a
rectangle field and then changing its style with the "Field Properties" dialog box, the
following function:
set the style of the templateField \

to "scrolling"

create field

reset templateField

will create a scrolling field directly.
choose, create, me, Properties by Name, reset, style, target, templateButton,
templateCard, templateGraphic, templateGroup, templateImage, templatePlayer,
templateScrollbar, templateStack
templateGraphic

the templateGraphic or templateGraphic()
This function allows you to set the properties of graphics either created with the
create command or created by dragging with the graphic tool. For example, instead
of having to create a rectangle graphic and then having to change its style with the
"Graphic Properties" dialog box, you can simply set the style of the templateGraphic
and create an oval directly:
set the style of the templateGraphic to "oval"

create graphic

reset templateGraphic

choose, create, me, Properties by Name, reset, style, target, templateButton,
templateCard, templateEPS, templateField, templateGroup, templateImage,
templatePlayer, templateScrollbar, templateStack
templateGroup

the templateGroup or templateGroup()
This function allows you to set the properties of the groups created with the create
command.

 143#204

create, me, Properties by Name, radioBehavior, target, templateButton,
templateCard, templateField, templateGraphic, templateImage, templatePlayer,
templateScrollbar, templateStack
templateImage

the templateImage or templateImage()
This function allows you to set the properties of the images created with the create
command.
create, me, Properties by Name, reset, target, templateButton, templateField,
templateCard, templateGraphic, templateGroup, templatePlayer, templateScrollbar,
templateStack
templatePlayer

the templatePlayer or templatePlayer()
This function allows you to set the properties of the players created with the create
command.
create, me, Properties by Name, reset, target, templateButton, templateField,
templateCard, templateGraphic, templateGroup, templateScrollbar, templateStack
templateScrollbar

the templateScrollbar or templateScrollbar()
This function allows you to set the properties of the scrollbars created with the
create command.
create, me, Properties by Name, reset, target, templateButton, templateField,
templateCard, templateGroup, templateImage, templatePlayer, templateStack
templateStack

the templateStack or templateStack()
This function allows you to set the properties of the stacks created with the create
command. One of the most common applications of this function is to set the initial
position of a stack:
set the visible of the templateStack to false

create stack "my stack"

set the rect of stack "my stack" to\

to "50,50,400,400"

reset templateStack

create, me, Properties by Name, reset, target, templateButton, templateCard,
templateField, templateGraphic, templateGroup, templateImage, templatePlayer,

 144#204

templateScrollbar
templateVideoClip

the templateVideoClip or templateVideoClip()
This function allows you to set the properties of the videoClips that will be imported
or played directly from disk:
set the dontRefresh of the templateVideoClip to true

set the scale of the templateVideoClip to 2.0

play videoClip "mymovie.avi"

create, dontRefresh, frameRate, import, mciSendString, play, scale, templateButton,
videoClipPlayer
tempName

the tempName or tempName()
This function returns a file name in the OS-specific temporary directory that is
guaranteed to be unique.
create, delete, fileName, open, specialFolderPath
textHeightSum

textHeightSum(<object>)
This function returns the total height of all the text in a button or field. It is provided
primarily for backward compatibility with SuperCard, and using the more natural
formattedHeight property is preferred for new development.
formatForPrinting, formattedHeight, formattedWidth, pageHeights, textHeight
there

there is a <thing>
This validation operator is used to verify that an object exists before trying to access
it. <thing> is any object (background, button, card, field, group, image, scrollbar,
stack) or the word "file", "directory", or "process". For example, to prevent errors
when a user clicks on a term that does not have a card describing it, the following
statements are used in a mouseUp handler in this stack:
if there is a card the clickText

then go to card the clickText

aliasReference, cardNames, convert, create, directories, exists, files, go, intersect,
longFilePath, number, open, Operators, rename, shortFilePath, within
ticks

 145#204

the ticks or ticks()
Returns the clock ticks (1/60 of a second) from some arbitrary time in the past. This
function is most useful in pairs:
put the ticks into startTime

wait until the mouse is down

put "That took" && the ticks - startTime\

&& "ticks"

effectRate, idleRate, milliseconds, seconds, send, wait
time

the [long | abbreviated] time or time()
The time function returns the time according to the system clock. The modifier is
optional and must be one of long, short, or abbreviated. If omitted, the short time is
returned.
The long time returns the time of the form: HH:MM:SS [AM | PM]
The abbreviated (or abbrev or abbr) and short form is: HH:MM [AM | PM]
AM or PM will not be shown if the twelveHourTime property is set to false.
convert, date, seconds, send, twelveHourTime, wait
toLower

toLower(<expression>)
The toLower function converts a string to all lower case characters.
baseConvert, charset, charToNum, compress, format, isoToMac, macToISO,
numToChar, toUpper
tool

the tool or tool()
This function returns the name of the current tool. See the choose command for
details. For SuperCard compatibility, tool can also be used as a stack property.
choose, create, editMenus, mode, mouseColor, newTool, select, selectionMode,
templateGraphic
topStack

the topStack or topStack()
This function returns the name of the top-most stack. The top-most stack is defined
to be the open stack with the lowest mode. If more than one stack has that mode, the
stack that was most recently activated (had the keyboard focus) is the topStack.

 146#204

backdrop, close, defaultStack, editMenus, go, mainStack, mainStacks, menubar,
mode, open, openStacks, substacks, topLevel, visible
toUpper

toUpper(<expression>)
The toUpper function converts a string to all upper case (capital) characters.
baseConvert, charset, charToNum, format, isoToMac, macToISO, numToChar,
toLower
transpose

transposr(<a>)
This function transposes a multidimensional numerically indexed array <a> so that,
for example, a[2,1] becomes a[1,2].
add, divide, extents, max, median, min, matrixMultiply, multiply, Operators, round,
statRound, standardDeviation, sum
trunc

trunc(<expression>)
The trunc function truncates the fractional part of a real number, leaving a whole
number (integer).
abs, average, max, min, numberFormat, Operators, round, statRound
uniDecode

uniDecode(<expression>)
This function converts a UniCode string back to a normal character string. Little-
endian (Intel, Alpha, etc.) format is assumed.
base64Decode, baseConvert, binaryDecode, charToNum, convert, load, numToChar,
post, put, toLower, toUpper, uniEncode, urlDecode, urlStatus
uniEncode

uniEncode(<expression>)
This function converts a string to a UniCode string. It does this by adding a null (0)
byte after each character. The resulting format is what is required when writing to
files on little-endian systems (Intel, Alpha, etc.). No provision is made for producing
the format required for UniCode files on big-endian systems (SPARC, PA-RISC,
PowerPC).
base64Encode, baseConvert, charToNum, convert, isoToMac, load, numToChar,
post, put, toLower, toUpper, uniDecode, urlEncode, urlStatus

 147#204

urlDecode

urlDecode(<expression>)
This function decodes a string posted from an HTML form. All "+" characters are
converted to spaces, and all hex encodings of the form %XX are decoded to their
character equivalents.
base64Decode, baseConvert, binaryDecode, charToNum, convert, decompress, load,
numToChar, post, put, toLower, toUpper, uniDecode, urlEncode, urlStatus
urlEncode

urlEncode(<expression>)
This function encodes a string as if it were posted from an HTML form. All spaces
are replaced with "+" characters, and all special characters are converted to hex
encodings of the form %XX.
base64Encode, baseConvert, binaryEncode, charToNum, compress, convert,
decompress, files, httpHeaders, load, macToISO, numToChar, post, put, toLower,
toUpper, urlDecode, urlStatus
urlStatus

urlStatus(<url>)
This function returns the status of the URL specified by <url> in the local cache. The
return value can be any of the following:
contacted - the site has been contacted

requested - the URL has been requested

not found - the URL was not found in the cache

loading,x,y - y is total size, x is bytes downloaded

cached - the URL download is complete

error - an error occurred during download

timeout - a timeout error occurred

cachedUrls, compress, httpHeaders, load, post, put, urlEncode
value

value(<expression> [, <object>])
The value function returns the value of an expression stored in a container. For
example if field "equation" had "1 + 3 / 2" in it:
put the value of field "equation"

would put "2.5" into the Message Box.

 148#204

The optional <object> expression uses that object as the context for the evaluation
instead of the current object.
alternateLanguages, call, do, Functions, me, merge, Operators, request, send
variableNames

the variableNames or variableNames()
Returns a list of the all the variables. The first line contains the parameters passed to
the current handler. The second contains the local variables created in the current
handler. The third line contains the local variables for the entire script. The fourth
line contains global variables that can be used in the current script.
See the container description for more information on variables.
constant, functionNames, global, globalNames, keys, local, localNames,
propertyNames
version

the version or version()
This function returns the version number of the currently executing MetaCard
engine.
buildNumber, environment, lookAndFeel, machine, platform, qtVersion,
screenVendor, systemVersion
waitDepth

the waitDepth or waitDepth()
This function returns the number of "wait for messages" commands that are currently
executing.
accept, pendingMessages, send, time, wait
weekdayNames

the [long | abbreviated | short] [system] weekdayNames
This function returns a return-delimited list of the weekday names in English or, if
the "system" parameter is supplied, the language specified for dates in the system
control panel or locale environment variable.
centuryCutoff, convert, date, monthNames, Operators, platform, seconds, time,
useSystemDate
windows

the windows or windows()
The windows function is a synonym for the openStacks function.

 149#204

mode, openStacks, topStack
within

within(<object>, <point>)
This function returns true if the point is within the visible region of the object, and
false otherwise.
if within(button "OK", the mouseLoc)

then show field "help"

else hide field "help"

rect, intersect, layer, loc, mouseStack, Operators, owner
wordOffset

wordOffset(<part>, <whole> [, <skip>])
This function returns the number of the word where string <part> is found within
string <whole>. If the part string does not appear within the whole, zero is returned.
Words are delimited by spaces, returns, and tabs and not by most punctuation.
If the optional third parameter <skip> is included, it specifies a number of words to
skip before beginning the search. If it is omitted, it is set to 0. Remember to add the
skip value to the value returned from offset to find the true word offset within the
whole string.
caseSensitive, itemOffset, lineOffset, offset, Operators, matchChunk, matchText,
put, switch, wholeMatches

 150#204

Metaclasses

Article Description Rating

9

The Basics:
Understanding stacks,
subStacks and
mainStacks

Fluency with MetaCard
depends on a knowledge of
the Card and Stack
metaphor. Essential reading
for all beginners.

.

1 The Message Hierarchy

A basic article explaining
the key concept of
messages and the message
hierarchy.

.

2 Using the Send
Command

Forget idle handlers! Use
the Send command to
implement asynchronous
events and scheduling.

. . . .

3 StackFiles

The magic formula for
easily and efficiently
splitting up your stacks
prior to standalone
building.

. . .

6 Groups and
Backgrounds

An introduction to groups
and backgrounds, what you
can do with them and what
sets them apart.

. .

4 Text Management
An in depth look at the
matchText, matchChunk
and replaceText functions.

.

5 Finding and Replacing
Text

Covers the find
command,and explores the
offset function as a more
efficient alternative. Also
covers the replace
command.

. .

 151#204

7 Using Files with
MetaCard

Reading and Writing to
files using MetaCard
including downloading
from the Internet and
launching applications.

. . . .

8 Doing Menus in
MetaCard

Everything you need to
know about menus,
covering menubars,
pulldown and popup
menus, combo boxes etc.

. . .

 152#204

Article
Difficulty Rating

2
The Basics: Understanding stacks, subStacks and

mainStacks
.

A window in MetaCard is called a stack. Each stack can
contain any number of screens, known as cards. Cards
contain objects such as buttons, text fields, images, etc. By
changing the card currently being displayed in a stack, you
change the entire contents of the screen being displayed in
that stack (window).
Stacks have a number of properties to control how they are
displayed. These include basics such as width, location and
height. There are also commands to control what mode
stacks are opened in, i.e. whether they are displayed as
palettes, normal (toplevel) windows or dialog boxes.
Not all stacks are created equal. There are two types: the
mainStack and the subStack. The analogy is simple. A
mainStack is stored in a file. SubStacks are stored in
mainStacks. When you open a MetaCard "document" on
disk, the mainStack will be displayed. Scripts in the
mainStack can then open any subStack in that file.
SubStacks are used to implement any other window in the
application you are creating, for example dialog boxes,
menus, or other program screens.
Lets walk through creating a new mainStack, and then the
process of attaching a subStack to it. Open MetaCard, and
create a stack by choosing "New stack" from the file menu.
A new stack will appear, called something like "Stack
00000000". The stack properties palette for that stack is
automatically opened when you create a new stack, so use it
to rename the stack so that we can refer to it easily again.
Now choose Save from the file menu. You will be presented
with a standard Save As dialog box, which allows you to
give the stack a file name and save it on disk. Type in "My
program.mc" and press the Save button.
Now, create a new stack. You could just save this stack into
another file as another mainStack by choosing Save from
the File menu again. However, this time, lets save it into the
same file as the mainStack "My stack" we just created.

 153#204

Artic
le Difficulty Rating

9 Messages and the Message Hierachy .

The scripting language in MetaCard is based on the principal of messages. A good
understanding of this principal and of the hierarchy or path messages take is essential
to efficiently learning MetaCard.
Whenever something happens, a message gets sent. These messages can be generated
directly by the user, or by a script. For example, when someone clicks on a button, it
will receive a mouseDown message as the mouse is pressed, and then a mouseUp
message when the mouse is released over the button. The mouseUp message is the
most usual message to use to respond to a user clicking on a button. Other messages
include mouseEnter for when a mouse moves over an object, mouseLeave for
when a mouse moves out of an object, mouseMove for when the mouse moves
whilst over an object, keyDown for when a key is pressed, preOpenCard for just
before a card is displayed on the screen, and many, many more.
To respond to a message, you write a script. At its most basic, you select the object
you want to write the script for with the pointer tool, right-click (or control-click if
you are using the MacOS) and choose Edit Script from the contextual menu that
comes up. You then type in a routine or handler that starts with the name of the
message you want to respond to.
Here is an example of a very basic handler you can place in any button:
on mouseUp
 beep
 move me relative 100,0 in 5 seconds without waiting
end mouseUp

This handler will cause the system to beep and the object to move 100 pixels to the
right, when the mouse is pressed and released on the object that contains this script.
You can make the behavior a little more complex by including another handler.
on moveStopped
 set the location of me to 200,200
end moveStopped

This handler will cause the button to jump to a location 200 pixels right and down

 154#204

from the top left of the card. It is an example of a message generated by MetaCard in
response to an event (the button stopping moving), as opposed to a message directly
sent by the user (e.g. when the user pressed the button).
The message hierarchy
In the example above, it is very clear where messages go. The user clicks on the
button, and the mouseUp message is received by the button, which then does the
mouseUp handler. However, it is not always so simple. Suppose there isn't a
mouseUp handler in the button. When the user presses the button, the message gets
sent to the button anyway. As there is no handler for the message in the button,
MetaCard then sends the message to the next object in the message path.
The message path (also know as the message hierarchy) is a logical system for
working out what object gets what message. Here is the path:
button -> card -> stack -> mainStack -> Home Stack -> MetaCard
Note that the first item in that path, the button, could be any object residing on a
card, such as a field, image, etc.
There are a simple set of rules to determine where in that path a message will get sent
and intercepted.

• Messages are always sent to the lowest possible object in that path. For
example, if a button is clicked on, a mouseUp message will be sent to that
button. If a card is opened, a preOpenCard message is sent to that card.

• Messages that are intercepted by handlers do not get any sent further up the
path, so all messages only get processed once

• Messages that are not intercepted get sent up the path until they are intercepted
• If messages are never intercepted, they reach MetaCard, which may or may not

do something with the message
Why would you want a message to be passed up a path? Surely if you haven't placed
a message handler in a button for a particular message, you don't intend the message
to be acted on? This is not the case. Message passing is actually a very useful
feature, because it means that you can write the minimum number of scripts to
achieve the effect you want. For example, if you have 10 buttons on a card that all do
the same thing when clicked, you can put a mouseUp handler in the card, and put
the common commands in it.
What if you have some objects that all use the same script, but others that don't? A
simple way of dealing with this is to insert the objects into a group, and place the
common script into the group object. When an object is grouped, the message path
looks like this:
button -> group -> card -> stack -> mainStack -> Home Stack -> MetaCard
Another way of doing it is to check the target function. That function contains
the name of the object that would originally have received the message, and can be

 155#204

used by handlers further up the message path to determine if they need to take action,
and what action to take. Place the following example into a card script:
on mouseUp
 put the target
end mouseUp

Now create multiple objects on the card, choose the browse tool to switch to run time
mode, and click each object. The message box will display the object clicked on.
(The put command is used to place text into the message box.)
What happens when the message reaches MetaCard? That depends on the message.
In most cases, MetaCard doesn't do anything. However, in some cases it does. For
example, if MetaCard receives a closeStackRequest message, it will close the
current stack. And if it receives a keyDown message it will place the key that has
just been typed into the field with the insertion point. Intercepting these messages is
useful to prevent a user doing something, e.g. putting inputting invalid data into a
field (you can check what the user typed before putting anything in the field) or
closing a stack without saving (you can ask the user if he or she wants to save before
closing).
Special cases
What if you have a handler in an object that intercepts a message, does something,
but then you want the message to continue up the hierarchy so that a handler further
up can also process the message? This is useful if you have a common script that
does processing after specific processing has been performed by each object. It is
also useful in cases where you have used a message such as keyDown to validate a
key for entry into a field, but now want to allow the data entry to proceed having
checked it. The solution is to use the pass command. This command causes the
message to be sent up the hierarchy, just as if it had never been intercepted. This
script would only enter text into a field if the user typed a number:
on keyDown theKey
 if theKey is a number then pass keyDown
 else beep
end keyDown

Note the third word on the first line of that script "theKey". TheKey is a variable that
contains the actual key the user pressed. Many messages come with optional
parameter information like this. For example, the mouseUp message comes with the
number of mouse button that was pressed. On Mac and Windows systems that will
usually be 1 or 3 (use the control-key to do a right click on MacOS systems), on
UNIX workstations, there may also be a button number 2. The following script
displays which mouse button was used:

 156#204

on mouseUp whichButton
 put whichButton
end mouseUp

What if you want to include a script before or after all other scripts temporarily? For
example, you might want to capture every user action before it was sent to any object
and do something with it. An example would be displaying a coordinates window
with the mouse coordinates. You would want to intercept the mouseMove message
before it got sent, and potentially used, by any other object. The solution to this type
of problem is to use frontScripts and backScripts. FrontScripts are
object scripts inserted before the message hierarchy, and backscripts are scripts
inserted after the message hierarchy, but before MetaCard itself.
frontScript -> button -> card -> stack -> mainStack -> Home Stack -> backscript ->
MetaCard
Here is an example of a frontScript in use. Create a button, name it
"coordinates" (select it and choose Object Properties... from the Edit menu to change
its name) and place the following script into it:
on mouseMove
 put the mouseLoc
end mouseMove

If you choose the browse tool and move the mouse over that button, you will see that
the location of the mouse is displayed in the message box. Now, type the following
into the message box and press return:
insert the script of button "coordinates" into front

Now move the mouse around the card and over other objects. The coordinates are
displayed as you move. To remove this script:
remove the script of button "coordinates" from front

To remove all scripts from front:
remove all scripts from front

It is always a good idea to include a pass statement at the end of a frontScript.
This allows the message intercepted in the frontscript to go on to be received
by the object that would normally expect that message, such as the button under the
mouse. So in the coordinates example above, you should insert a line before end
mouseMove that says pass mouseMove.

 157#204

Backscripts are the same as frontScripts, except that these get called only
at the end of the message path, and therefore won't be called if any handler intercepts
the message. They are often useful to prevent a user from closing any stack in large
series of stacks, or to do a check on a certain type of message that must always be
intercepted somewhere in the path. Passing backScript messages is only necessary
where you want the message to continue on to MetaCard itself to be acted on.
The mainStack script
The mainStack script is worthy of particular note. Any message sent to any object,
card or subStack stored in the same file as the mainStack, that is not intercepted
by an object will be sent through the mainStack. This has two important
ramifications. The first is that you can use the mainStack to store frequently used
commands and functions - basically anything that multiple parts of your program
might want access to. The second is that the mainStack may intercept and act on
messages you don't want it to act on if you're not careful.
For example, a handler for the preOpenStack message (sent to all stacks when
they are opened) will be executed every time a subStack stored in the same file as the
mainStack is opened, providing the message isn't intercepted by that subStack first.
Sometimes that's useful; often it isn't. To avoid it, set a variable in the mainStack
script like this:
on preOpenStack
 global gHaveDonePreOpenStack
 if gHaveDonePreOpenStack is true then exit to MetaCard
 put true into gHaveDonePreOpenStack

--put the rest of the handler here.....

As you probably guessed, that handler will only execute once - i.e. the first time the
mainStack is loaded. The global variable gHaveDonePreOpenStack retains its value
until you quit, and gets set to true the first time the handler is executed. The handler
will always be exited before execution in subsequent cases.

 158#204

Article Difficulty Rating

8 Using the Send Command

 Using the "Send" Command to Schedule Future Events and

Animation
You wouldn't guess from the name, but the send command it is
actually one of MetaCard's most important features. This article
details using it to schedule events and animations.
This is a basic send command:
send "mouseUp" to me in 5 seconds

That statement causes the message "mouseUp" to be delivered to
the same object that sent it, 5 seconds from when the command
was executed. The MetaCard engine is not occupied during that
period, and is therefore free to do other things. After 5 seconds
have elapsed, that message will be delivered to the object.
The advantages of this approach are many. You can cause
messages to be sent at any time in future. There is no measurable
performance decrease in the interim between sending and
receiving the message. MetaCard remains free to do other tasks
during that period. This completely eliminates the need to use
messages such as "idle", a common, complicated and processor
intensive kludge used in many other tools.
 Scheduling a Repeat Loop

Setting something to occur regularly is easy. The following script
updates a field on screen to show the time, once every ten
seconds.
on mouseUp
 --this handler starts the timer
 setClock
end mouseUp

on setClock
 put the time into fld 1

 159#204

 send "setClock" to me in 10 seconds
end setClock

This example would repeat forever, putting the time into field 1
every 10 seconds.
We can easily modify this example to be more useful. We'll
include a facility to cancel the message, and also make the time
update much more frequently, and include seconds.
local lTimerID

on mouseUp
 --this handler starts the timer
 setClock
end mouseUp

on setClock
 put the long time into fld 1 --long time also has
seconds
 send "setClock" to me in 600 milliSeconds --600
milliseconds or 0.6 seconds
 --will be enough to keep the seconds on the clock
current
 put the result into lTimerID
 --the above line stores the "ID" of the message just
sent
end setClock

 160#204

The result contains a unique ID for the message you have sent.
You can stop that message from being delivered at any time by
passing that ID to the cancel command:
cancel lTimerID

The pendingMessages function contains a list of all the messages
scheduled to be delivered in the future. Messages are added to it
every time an event is scheduled, and removed when the message
is delivered (or cancelled with the cancel command).
Here is a line from the pendingMessages:
12,913382037.933333,setClock,button id 1003
of card id 1002
of stack "Stack 913381993"

The first item is the ID of the message. You can cancel the
message using this ID just in the same way you would cancel it
using the result function to retrieve and store the id.
cancel (item 1 of the pendingMessages)

The second item contains the time the message will be delivered
at. The third item contains the name of the message being
delivered, and the fourth item contains the path for the object that
the message will be delivered to.
The pendingMessages function can be used to check if a message
has already been scheduled. In the above example of updating a
clock, a problem may arise if the user presses the original button
used to trigger the script for a second time. Two sets of the same
message will then start being sent, and the clock will be updated
twice as frequently as originally specified. Repeated clicking of
the button will eventually cause messages to be sent almost
constantly, locking up MetaCard. Inserting the following line into
the top of the mouseUp message prevents this problem:
if "setClock" is in the pendingMessages then
exit mouseUp

This will prevent the mouseUp handler from executing if the
cycle has already been started. Of course, advanced users reading
this may have noticed it is a few milliSeconds more efficient to
set up a variable the first time the handler is executed, and check

 161#204

on closeCard
 repeat for each line l in the pendingMessages
 cancel (item 1 of l)
 end repeat
end closeCard

 162#204

That repeat loop is useful to remember. Run it in the message box
or keep it handy in a button when you're debugging any complex
send based script. You may want to use it in an emergency to
clear the pendingMessages when you get into something you
find you can't get out of.
 Doing animation with "send"

An obvious use for the send command is to do animation.
Carefully done, animation can be virtually asynchronous,
meaning that MetaCard can respond to events while the
animation is taking place. For a smooth animation, it is important
that the individual handlers executed by the send command are as
short as possible. Where multiple things need to be done, it is
best split into multiple handlers.
The reason for this is simple: only one script can be executing at
a time. Send is no exception. Like any other command, when a
send command is running, other scripts cannot run. In fact, a send
command can only be delivered if there is no other handler
running. Otherwise, it will wait until the end of whatever handler
is running to be delivered. Keeping all the handlers that execute
short, and splitting longer scripts into multiple handlers delivered
by send, allows you to maintain user interaction whilst updating
the screen.
Why is MetaCard not truly multi-threaded? A multi-threaded
engine would be capable of running multiple scripts at once.
MetaCard does not support this, because of the complexities of
creating and debugging a multi-threaded application. The send
command is provided as an alternative, and if used well, can
achieve excellent results without the hassle of keeping track of
multi-threaded script or code. Note that the GIF animation
commands and the move command are exceptions to this: they
will both continue to run when other scripts are running (with a
few exceptions such as using the file access commands to read in
huge files).
It is a good idea to use the move command in conjunction with
animated GIFs to do the bulk of any animation wherever
possible. You may want to start and stop GIF animations, start
and stop move commands, manually alter the frame being shown
in a GIF animation, alter button icons in a moving button, start
and stop sounds, show and hide objects, scroll fields, or use
various other techniques or a combination of all of these to
produce a presentation. All of these can be controlled, while still
allowing user interaction, with a series of carefully scheduled

 163#204

local lCurrentFieldScroll, lCurrentEndValue

on mouseUp
 put 0 into lcurrentFieldScroll --start with the field
scrolled to 0
 put 500 into lCurrentEndValue --the vScroll of the
field when fully scrolled down
 updateField
end mouseUp

on updateField
 add 10 to lCurrentFieldScroll
 if lCurrentFieldScroll > lCurrentEndValue then exit
updateField
 set the vScroll of fld "example" to lCurrentFieldScroll
 send "updateField" to me in 100 milliseconds
end updateField

This example will scroll a field, incrementing every 100
milliseconds. For basic animation, this is often enough. The script
will take the same order of magnitude of time to run regardless of
the speed of machine it is run on, and varying the delay between
messages can be used to alter the speed of the animation.
However, if you need to guarantee that the script will take a
certain amount of time to run, you need to do a little more work.
Other messages could get delivered when that field is scrolling,
or the machine might be busy and therefore slow down slightly. If
you are playing back audio or other parts of a presentation to be
exactly in sync, you cannot allow this field to be left behind or
gradually become out of sync if anything eles on the computer
causes a glitch or slow down.
Here is a new script that will ensure that the field scrolling is
complete inside ten seconds. If there is a delay or interruption
causing messages to be delivered late, the scrolling will jump to
the correct position when processor time is returned, rather than
increase the overall time taken to complete the effect.
local lCurrentFieldScroll, lCurrentEndValue, lTotalTime,
lStartTime

 164#204

on mouseUp
 put 10000 into lTotalTime -- the total time allowed in
milliseconds
 put 0 into lcurrentFieldScroll --start with the field
scrolled to 0
 put 500 into lCurrentEndValue --the vScroll of the
field when fully
 --scrolled down
 put the milliseconds into lStartTime --measure the
animation from
 --this start time
 updateField
end mouseUp

on updateField
 put the milliSeconds - lStartTime into tCurrentTime
 if tCurrentTime > lTotalTime then --we've reached the
end
 set the vScroll of fld "example" to tEndValue --
ensure that the
 --field
is at the end
 exit updateField --don't send this message again
 end if
 put tCurrentTime / lTotalTime * lCurrentEndValue into
lCurrentFieldScroll
 --thats the position the scroll bar should be based on
the time elapsed
 set the vScroll of fld "example" to round
(lCurrentFieldScroll)
 -- rounding is required or the script will not work
 send "updateField" to me in 50 milliseconds
end updateField

 165#204

You can use the above script for just about any time related
activity that needs to be performed on time. Just alter the
variables in the first handler, such as the total length, the total
number of frames (in this case the total scroll value of the field).
You can also change how frequently the message is delivered.
This message was delivered every 50 milliseconds, changing that
value down the way will result in a smoother animation, and
changing the value up the way will leave more processor time
free. But altering that interval will not alter the total length of
time time to complete the animation.
Enjoy experimenting and using the send command! And look out
for a timeline animation tool that automates writing the scripts in
our forthcoming Editor for MetaCard.

 166#204

Article Difficulty Rating

7 StackFiles . . .

Is your stack a bloated, heavyweight RAM guzzler? Want to save
changes to individual subStacks in your standalone on a users
machine? Can't stand the inconvenience of removing images from
your stack and referencing them by fileName prior to delivery?
Split your single mainStack/subStack combination into multiple
files (each of which can be loaded and unloaded from memory
individually), and use stackFiles to prevent scripts that refer
to these subStacks being broken.
stackFiles is a stack property that is used to reference
separate stacks stored in separate files by name, just as if they
were subStacks.
Here's how to utilise the power of stackFiles.
 Split your large stack up into multiple files, making the

subStacks into mainStacks (though you can leave little stacks like
ask and answer as subStacks of the mainStack if you like). To do
that, open each stack and choose "Save As..." from the File menu.
Note that Save As... will remove a subStack from its original
mainStack and save it into a file (it does not leave a copy in the
original mainStack).
Create a new folder called "Data" or something that equally
conveys "don't go here"to the end user. Move all the subStacks
that have newly been turned into files (of single mainStacks) into
the new folder. This folder should be in the same folder as the
standalone, but more about that later.

 167#204

 168#204

 Toplevel your original mainStack, called "My Program" in the
diagram. This should be the stack that actually gets built into the
standalone, i.e. the one that loads from the desktop when you
open up. (A good use for a stack like this is to display a splash
screen or welcome notice.)
 Select Stack Properties from the Edit menu, then click the Stack

Files... button. Make sure the menu is showing the name of the
current mainStack selected.
 Type the stack names of each of the subStacks you just saved

into separate files, one per line. Those are the actual names you
have for each of these stacks, the ones you use on the stacks and
in your scripts not the file path for each.
 Next, go back up the list and add a comma to the end of each

line.
 Now, go through each line and add the file path to the file that

each stack is now stored in.
For example:
C:/Program
Files/MetaCard/Program/MyApp/Data/myfirstwin
dow.mc

However, a complete path like that is actually not a good idea.
That's because when you install the application, you're not likely
to be installing it in that directory. Your install directory will
probably read something like..
C:/Program Files/MyApp/Data/myfirstwindow.mc

Don't try to guess this complete path, as the installation directory
might be changed by the user. For example, the user might be
instal onto drive "D" or run your program directly from the CD...
The solution to this problem is to use relative paths. Relative
paths start at the current directory and move up from there. The
current directory is set on start up by MetaCard to the directory
the MetaCard application is running from. When you load a
stack as a non-standalone, the directory will be set to the
directory that the MetaCard application is in. When you load as a
standalone, it will be the directory to the actual standalone
application file.
Let's assume we're working with a standalone for the moment.

 169#204

Article Difficulty Rating

4 Groups and Backgrounds . .

 An introduction to Groups

A group is a type of object that contains other controls. It can contain any controls -
buttons, fields, graphics, scrollbars, and eps objects, in any combination and number.
As a result, groups are powerful and flexible objects. Here are some examples of
what you can do with them:

• Hide and show multiple objects with a single command
• Move multiple objects with a single command
• Creating "panes" in a window to allow scrolling sets of objects
• Display the same object or set of objects on multiple cards (it is possible to

group a single object)
• Create a common script that can be used by multiple objects
• Automatically track hiliting in a set of radio buttons
• Create tabbed menus
• Place menus into the Mac system menubar

When you group objects, they get placed in another object, which comes complete
with selection handles, the ability to show a border, an option to show a scrollbar etc.
Just like other objects you can assign groups scripts and custom properties, send
messages to them, move them etc. To edit the properties of a group, double click it
with the pointer tool like any other object.
However, groups are really a unique cross between a card and an object. Like cards,
they are attached to the stack. Unlike cards, they can be smaller than the window
frame, can be moved around as objects on cards, can scroll and do most of the things
an object can do. Like a card, their scripts get inserted into the mesage hierachy, just
above all the objects inside them, but before the card.
 Groups and Backgrounds, why and whats the difference?

Once created, a group can be displayed on any card in the current stack. Try it now:
create a new stack with some objects and group them (select them and choose
"Group" from the Edit menu), then choose "Backgrounds..." from the "Edit" menu.
Select the group you have created and press "Remove". The group will dissapear
from the card (move the dialog out of the way if you can't see the card). You will
note that the group has appeared in the lower half of the box. Select it, and press
"Place". It will reappear on the current card. Now, create a few more cards and go
through each one. You will be able to place and remove the group on any card in that

 170#204

stack using the Backgrounds dialog. Note you can only place a group once on any
one card. That is why the group dissapears from the bottom half of the dialog when
you place it: the group is still available for placement on other cards, but can't be
placed again on the current card.
As you will already have noted, in MetaCard there are two names for groups: groups
and backgrounds. Both are used in the Metatalk language. Confusing? The two terms
are useful. Group refers to group objects counted relative to a card, background
refers to group objects relative to the stack.
Groups are displayed as objects on the card. Asking for the number of
groups will give you the total number of groups on the current card.
Backgrounds refers to the total number of groups in the stack. Asking for the
number of backgrounds will return the total number of unique groups in the
stack, regardless of whether or not they are on the current (or any other) card.
Here are two examples. Firstly, the backgroundNames property returns a list of
all the groups anywhere in the stack, whereas the groupNames returns a list of all
the groups that are on a particular card. Secondly, referring to backgrounds and
groups by number works differently. Referring to backgrounds by number works
in order of creation of any group anywhere in the stack, but referring to groups by
number works by using the layer of the group on a card. Thus background 1
is the first group created anywhere in the stack, whereas group 1 is the group with
the lowest layer on the card.
You need the two terms when using scripts to place groups on a card. To determine
which group to place, you need to be able to count it relative to all the other groups
in the stack.
 Manipulating Groups

When creating groups, it is important to remember that the layer of controls in
each group is determined by their order of selection before they are grouped, so if
you want to make it possible for the user to tab between controls in a group simply
select them in the appropriate order. Of course, you can change this order at any
point by editing the layer of the individual objects within the group. Remember
that the layer of grouped objects only refers to their layer within the group, not in
relation to other objects in the card. However, the number of a grouped object refers
to its number relative to all the objects on the card.

TIP: The function the selectedobject returns the name
of the currently selected object. If multiple objects are selected
that are not grouped it returns the names of all the selected
objects with one on each line, in order of selection.
To edit a group, open its properties palette, click the Properties tab, and press Edit.
You will go into edit background mode, and only the contents of the group will be
displayed - all other objects will dissapear. To stop editing a group, choose "Stop

 171#204

editing BG" from the edit menu.
To do this by script:
start editing group 1
start editing background "example"
stop editing this bg

To create a group and objects in a group by script:
create group "My Group" -- creates a new group called "My
Group"
create button "My Button" in group "My Group" -- creates
a button
create fld "My Field" in group "My Group"

If you have a nested group (a group within a group) , it will not appear in the Edit
Background dialogue. Edit the first level group and then select and edit the nested
group.
You can also add or remove groups to cards by script:
place group "My Group" onto card 1
place background "My Group" onto card 2
remove background "My Group" from card 1

Remember that a group is one object. So be wary about deleting groups by selecting
and pressing the delete key because this permanently deletes them from every card in
the stack.

TIP: Setting the selectGroupedControls global property
to true
set the selectGroupedControls to true

allows you select individual controls within a group without
having to ungroup or go into Edit Background mode. (This
requires MetaCard 2.2.1B1 or above.)
Individual controls within a group can be deleted by script, just as if they were
separate objects.
One particularly useful function of groups is to automatically make radio buttons
hilite correctly. If you create some radio buttons and group them, they will
automatically enforce radio button behavior without any scripts. It is possible to
navigate between radio buttons in the same group using the arrow keys on Windows
and UNIX. To do this set the tabGroupBehavior of the group to true. This will

 172#204

also makes the tab key skip over the whole group.
 Tabbed menus

Groups are important for creating tab menus and menu bars. To create a tabbed menu
create a button and using the Button Properties dialogue, set the style to tabbed. Set
the menu contents of the button to the name of the different tabs you require, and
create groups named the same as each tab. It is easy to hide and show the groups
corresponding to each tab. Place the following script in the tabbed button:
on menuPick newTab, oldTab
 hide group oldTab
 show group newTab
end menuPick

In the above example, the parameters passed with the menuPick message
(containing the name of the tab clicked on and the name of the tab that was
previously in front) are used to hide and show groups with the same name as the
tabs.

 Displaying text on multiple cards

When placing a group on multiple cards, you will often find you
want to fields such as labels to display the same text on each card
in the stack, while others fields (usually for user entry) should be
editable and display different text on each card. Fields which
display the same text on each card have their sharedText
property set to true, and those that display different text have
their sharedText property set to false.
Similarly, if you want to display the same state of hiliting in
buttons and checkboxes on each card, set their sharedHilite
property to true. (You will find that if you create labels using the
Show as Label button in the Button Properties dialogue their
sharedText property is set to true, but the default setting for
fields is false.)
You can sort cards by the contents of their fields using the sort
command. Sorting can be alphabetical or numeric, and ascending
or descending. The sort command can be complimented with
the identically named mark command and mark property. For
example if you want only to sort certain cards, they can be
marked and you can specify that only the marked cards are
sorted.

 173#204

Article Difficulty Rating

6 Text Management

 174#204

There are many features available in MetaCard for doing complex
matches on text. From the simple find and replace search
routines to the extraction of key entries from complex formatted
text, MetaCard has the features you need. This article examines the
matchText, matchChunk and replaceText functions. It
also discusses splitting a large file into chunks suitable for
processing, using an array. For information about the more basic
search and replace features see the article on finding and replacing
text.
 The matchText Function

The matchText function can be used for advanced text matching.
Its has two main areas of functionality. First, it validates whether
text contains a given pattern, and second, it can return certain
patterns within a that string to specific variables if it makes a
match. If the text passed to it is a multiple-line container, the
validation applies to the entire container. For output to variables,
however, it applies only to one occurence of the match, so if you
want to repeatedly extract the same pattern, you need to apply the
matchText function for each line. The syntax is as follows:
matchText(<source>, <regularExpression>[,
<output variable 1>,
<output variable 2>...])

A basic example of validation..
matchText("hello there", "hello")

This will return true since the string "hello" is a substring of "hello
there".
matchText(field "My Field", "hello")

Similarly, if there is a field called "My Field" containing the string
"hello", this will return true.
But matchText is not really intended to perform such basic
matching. To give the exact characteristics of the text match
<regularExpression> can be formed from any combination of
special characters, each of which has a specific function.
 The Special Characters for use with the matchChunk,

matchText, and replaceText functions.
The following table shows all the special characters that can be

 175#204

Special Character Description

(exp) matches the expression, and
puts result in a variable*

. (a period) matches any character

^ forces match to be at beginning
of string

$ forces match to be at end of
string

[chars]

matches any of the characters
in the set of chars. The
characters can be either
characters allowed to match, or
if ^ is the first character in
chars, not allowed to match.
You can specify a range of
characters by putting a -
between them. For example [a-
z] matches any lower case
alphabetic character.

* matches zero or more of the
preceding special character

+ matches one or more of the
preceding special character

?
matches zero or more of the
same characters matched by the
previous special character

regEx 1 | regEx 2 matches either regular
expression

*It is important to remember that everything enclosed within parentheses in this
expression denotes an output to a variable. The first set of parentheses is output to
the first variable <output 1> and the second set of paretheses is output to the second
variable <output 2> and so on.
Example 1: matchText with Email Addresses

IMPORTANT: Unlike commands such as the put command,
the matchText function does not automatically declare
variables. Therefore, remember to declare the variables prior to
usage.

 176#204

local actualName, addressName, ispName,
classification
put "From: Joe Bloggs <jbloggs@someISP.com>"
into source
put matchText(source, "^From: (.*) <(.+)@
([^\.]+)\.(.+)>",\
actualName, addressName,ispName,
classification)

The <regularExpression> component in the above pattern is
broken up in the table below.
Component of
String Match in Source Description of Special

Chars

^ From: From:

the ^ character forces the
string "From:" to match
the beginning of the
<source> expression

(.*) Joe Bloggs

the () enclose an output to
the variable actualName
the . (period) character
matches any character and
the * character allows
zero or more unspecified
subsequent characters
before the next specified
character (in this case < is
next specified)

< < a literal match of the <
character

 177#204

(.+) jbloggs

an output to the variable
addressName, in this case
matching if there are any
characters before the @
symbol
Note the use of + instead
of *. The + requires that
at least one character be
present. E.g. matchText
("", ".+") returns false, but
matchText("", ".*")
returns true. This example
of matchText will
match a string with no
name before the actual
email address, but
requires the email address
to be present.

@ @ a literal match

([^\.]+) someISP

the [] encloses a
character match
the ^ specifies that the
string must not match the
period
the \ specifies that the . is
escaped since it is a
special character but a
literal match is wanted
the () specify the value is
to be output to the
variable ispName

\. . a literal match of the
period .

(.+) com an output to the variable
classification

> > a literal match of the >
character

Thus in the above example output to variables is as follows:

 178#204

Variable Contents of Variable
actualName Joe Bloggs
addressName jbloggs
ispName someISP
classification com

Example 2: matchText with Phone Numbers
local international, county, district
put "+44131 672 2909" & return & "0131 554 2961" into
source
 repeat for each line l in source
 -- matchText must be applied to each line
 if matchText(l, "(^\+[0-9]+|[0-9]+) ([0-9]+) ([0-9]
+)", \
 international, county, district) then
 put "national code:" && international & return
after output
 put "county code:" && county & return after output
 put "district code:" && district & return & return
after output
 end if
 end repeat
answer output

Component
of string

Match in
string 1

Match in
string 2

Description of special
chars

(^\+[0-9]+ +44131

^\+ literally matches the
+ character at the start of
the string - the ^ forces
the match to be at the
start of the string, the \
escapes the + character
[0-9]+ matches any
numeric characters

|

allows a match of the
string either before or
after it; whichever
matches is put into the
variable international

 179#204

[0-9]+) 0131 matches any numeric
characters.

([0-9]+) 672 554

matches any numeric
characters
the matching string is put
into the variable county

([0-9]+) 2909 2961

matches any numeric
characters
the matching string is put
into the variable district

TIP: To match the " (quote) character use the quote constant. To
make an actual match with one of the special characters, you
must first escape that character by inserting the \ character before
it.

 The matchChunk Function
matchText(<source>, <regularExpression>[,
<output1FirstChar>,
<output1LastChar>, output2FirstChar,
output2LastChar...])

The matchChunk function works in a similar fashion to the
matchText function. The same special characters work, and an
output is made to variables, but the matchChunk function
outputs a chunk expression to describe the matched text, rather
than the actual text matched. Output occurs to pairs of variables.
The first of the pair is the number of the first character in the
matching string, the second is the number of the last character in
the matching string. Thus in equivalent matchChunk and
matchText strings the matchChunk has twice the number of
output variables.
Example 3: matchChunk with Email Addresses
If Example 1 is modified to use matchChunk instead of matchText
we have the following:
local actualNameFirst, actualNameLast, addressNameFirst,\
addressNameLast, ispNameFirst, ispNameLast,
classificationFirst,\
classificationLast

 180#204

put "From: Joe Bloggs <jbloggs@someISP.com>" into source
put matchChunk(source, "^From: (.*) <(.+)@([^\.]+)\.(.+)
>",\
actualNameFirst, actualNameLast, addressNameFirst,\
addressNameLast, ispNameFirst, ispNameLast,
classificationFirst,\
classificationLast)

Now the output to variables is as follows:

String Matching Text Variable Pair Contents of
Variable

(.*) Joe Bloggs
actualNameFirst
actualNameLast

7
16

(.+) jbloggs
addressNameFirst
addressNameLast

19
25

([^\.]+) someISP
ispNameFirst
ispNameLast

27
33

(.+) com
classificationFirst
classificationLast

35
37

 The replaceText Function
replaceText(<source>, <regularExpression>,
<replacement>)

The replaceText function can be used to replace all
occurences of a text string in a source. All the same special
characters as in matchText and matchChunk can be used in
the regularExpression, and the same rules apply for
escaping special characters. However, for most uses, the
replace command is better because of its speed and simplicity.
 Splitting up large amounts of data to perform text matching operations

Say you're importing a database, or some other large file with a lot of data in it. What
do you do with it when you've read it in? In most cases, the first thing to do before
processing anything is to split it up into manageable chunks, rather than have it all
sitting in one large variable. If you want to do any chunk expressions or text
matching on the data, e.g. searching for particular strings using lineOffset(),

 181#204

you'll find its inefficient to work with large quantities of data in one variable. If
you're using lineOffset() to pick out all the lines with a particular string, for
example, you have to be aware that it *always* starts searching from the start of the
container. Even if you specify a number of lines to skip, whilst these lines aren't
searched, they still have to be read through, so this does not lead to performance
improvements. By the time you've got a reasonable way down the file, you'll be
unnecessarily reading through large amounts of data at the start of the file each time
you pick out another line.
Typically, you'll want to use an array to split the data up into neat chunks, each of
which can be accessed as an independent unit. The time it takes to split the data up
like this is usually insignificant compared to the time savings made on processing the
data afterwards.
Lets say that we're dealing with a return deliminated file, where each database entry
begins with a line containing the word "start" and a name or identifying string for
each entry:
start myDataBaseRecord1
record 1 contents...
record 1 contents...
more lines of contents...
start myDataBaseRecord2
record 2 contents
etc...

The following script will split up the data, waiting until the word "start" appears in a
line then placing the text (up until the next time it meets the word start) into a
separate array element:
repeat for each line l in tFileContents
 if word 1 of l is "START" then
 put l into currentobj
 else
 put l&cr after gBigArray[currentobj]
 end if
end repeat

The first line tells MetaCard to cycle through each line in the field contents, putting
each line into the variable l. An alternative way of doing this would have been to
use:
repeat with i = 1 to the num of lines in tFileContents

However, the latter method should only be when you absolutely need to know the

 182#204

line number of each line for some reason. Using the "repeat for each line..."
construct, as in the first example, is always very considerably faster.
The second line checks if the line starts with the word "start". You can use anything
here, e.g. a delimiter you expect to find in the text, or even a complex match on the
line (as described earlier in this article). If the data you're picking out is fairly simple
and doesn't require more than simple processing (e.g. it just gets split up into fields),
you may want to do that here instead of split the data up into an array for further
processing at all.
The third line contains the name of the array element currently in use. This gets
updated every time the word "start" is encountered. Because arrays in MetaCard can
be indexed with strings, there is no need to condense this line into anything - the
entire line can be used to reference the array element.
The fifth line places the current line in the variable l into the element of the array
currently in use (named in currentObj).
The result of using that repeat loop on the small set of example data above would be
an array with two elements.

Element Name
start
myDataBaseRecord
1

start
myDataBaseRecord
2

Contents
record
contents...
record
contents...
more lines of
contents
record 2
contents
etc...

To process the data now that its been split up, we need a list of all the elements in the
array:
put keys(gBigArray) into tListOfElements

The variable tListOfElements now contains a complete list of each record in the
array. Processing that is a simple matter of cycling through each line and passing the
array element to a function that does the processing. For example:
repeat for each line l in tListOfElements
 doMyDataProcessingRoutine gBigArray[l]
end repeat

The end result? To doMyDataProcessingRoutine would be sent each chunk of the
original file separated between lines containing the word "start". Because you're now

 183#204

dealing with a smaller chunk of data, its efficient to do any intensive processing
routines on each record: e.g. chunk expressions or regular expression matching
(REGEX) to draw graphs, display information, build objects, or whatever you like...
If you've been following along closely this far, you'll have spotted one problem. The
elements passed to the doMyDataProcessingRoutine won't be passed in the order
they were in, in the original file. Why? The keys() function doesn't return the
elements in the order they were created in the array. If you need to process the file in
order, then alter the original script to:
put 1 into tCounter
 repeat for each line l in
tFileContents
 if word 1 of l is "START"
then
 put l && tCounter into
currentobj
 add 1 to tCounter
 else
 put l&cr after gBigArray
[currentobj]
 end if
end repeat

The variable tCounter increments each time a new element is created, and appends
the current element number as a seperate word to the end of the element name. When
getting the list of array elements, you need to sort them:
put keys(gBigArray) into tListOfElements
sort lines of tListOfElements numeric by last word of
each

Article Difficulty Rating

5 Finding and Replacing Text . .

 184#204

Metacard offers flexible and effective features to search and
replace text. There are various methods to go about this, from
relatively straightforward commands like find and replace, to
more advanced functions like matchText() and
replaceText(). This article focuses on the more
straightforward searching features. For more information about
advanced features see the article on text management.
 The Find Command

One way to search for a text string is to use the find command.
It is what the MetaCard Find tool uses, and has a number of
advantages. Firstly, it can be used to search multiple fields in the
defaultStack, as well as specific fields.
find "Joe" -- searches all the fields in the stack card
by card
find "Joe" in field "Name" -- searches the "Name" field
in all the cards

Secondly, you can control characteristics of the search by
specifying the <type>, in the form:
find <type> <expression>

<Type> can be chars, string, whole, or word. Using
chars finds exact character matches anywhere in words, but
does not match text expressions longer than a single word.
String finds exact character matches anywhere in words, and
includes spaces and multiple words. Whole only matches the
entire expression if it is complete words, and word matches
whole words but only matches the first word in the expression.
The following table gives examples of find commands and the
text which is matched using different search characteristics.The
first line in the table is equivalent to typing:
find chars "man"

Examples of the Find Command, operating in a field
containing the words "The yellow man".
Type Search the result the foundText

chars man empty man

 185#204

string man empty man
whole man empty man
word man empty man

chars e yellow empty e
string e yellow empty e yellow
whole e yellow not found
word e yellow not found

chars yellow man empty yellow
string yellow man empty yellow man
whole yellow man empty yellow man
word yellow man empty yellow

chars man yellow empty man
string man yellow not found
whole man yellow not found
word man yellow empty man
There are a number of functions which give information about
the text which has been found with the find command. The
foundChunk returns a chunk expression describing where the
text was found, e.g. char 2 to 3 of field 1.
The foundText (used in the field above) contains the actual
text found. The foundLine returns the number of the line the
text was on. The foundField returns the field name. The
foundLoc returns the coordinates of the border drawn around
the text that was found.
If you do not want certain fields such as labels to be included in a
general search, set their dontSearch property to true. If you
want to discriminate capital letters and lowercase letters set the
caseSensitive local property to true. This property also
applies to other methods of searching besides the find
command, such as the offset functions.

 186#204

TIP: If you want to use the find command, but you want the
text which is found to be selected as a normal text selection,
rather than the standard black border, use the following script:
lock screen -- avoids any screen flicker
find <expression>
select the foundChunk
unlock screen

 The Offset Function

Despite the flexibility of the find command, it is not always the
best feature for searching.
The offset function is a simple alterative to find. It is
generally faster than the find command, and has the advantage
that it can be used in other containers besides fields, such as
variables. It also does not display any results, leaving you free to
generate user feedback to the search in any way you like.
Offset returns the character number of a specified string within
a whole string.
put offset("there", "hello there")
-- returns 7 since the t in "there" is character 7 in
"hello there"

If the specified string is not within the whole string 0 is returned.
To use the offset function like the find command, try
something similar to the following script:
ask "Enter the text to find?"

if the result is not "Cancel" then \
select char offset(it, field 1) \
to offset(it, field 1) + length(it) - 1 of field 1

-- select from the first character to the last character
to be found
-- the length function returns the number of characters
in a string
-- the \ character is simply used to separate long lines

 187#204

The offset functions returns character offsets, but there are a set of
other similar functions that work in relation to different chunks:
itemOffset, wordOffset, lineOffset. A useful property to
remember when using these is the wholeMatches property. When set to
true it forces all matches made to be complete chunks, i.e. complete items,
words, or lines. When false, it allows partial matches.
 Useful Operators

There are various operators which can be useful during text searches. The
contains, is in and is among operators can be used to make text
comparisons. Of these, only is among merits further explanition. It will
only return true when a complete match is made.
if field 1 contains "hello" then beep
if "ello" is in "hello" then beep
if "hello" is among the items of fld 1 then beep
if "This complete line." is among the lines of fld
"example" then beep

 The Replace Command

The replace command can be used to replace text strings in containers. It
replaces all instances of a text string in the specified container. For more
complex replacements, see the article on text management. The syntax is
as follows:
replace <text> with <replacement text> in <container>

For example:
replace "his" with "her" in field 1
replace "this" with "that" in MyVariable

 188#204

Article Difficulty Rating

3 Using Files With MetaCard . . .

For file access, MetaCard uses the URL system. In keeping with this, all of
MetaCard's file access commands use a "/" character as the directory deliminator,
regardless of platform. To read a file from somewhere on your computer, you simply:
put url "file:c:/test.txt" into theVariable
put url "file:/Macintosh HD/Files/example" into
theVariable
put line 3 of url "file:c:/example.txt" into theVariable
put "A line of text" into url "file:c:/examplewrite.txt"

answer file "Select a document to open:"
put it into tPath
put url ("file:"&tPath) into theVariable

ask file "Save this document as:"
put it into tPath
put field "text to save" into url ("file:"&tPath)

Note the use of the HyperCard compatible ask and answer file commands. Further
information on these commands is available in the MetaTalk reference stack.
All of the above examples open files in text mode. If you want to access a binary file:
put url "binfile:c:/test.txt" into theVariable

To access something from the internet, it changes slightly to the familiar:
put url "http://www.mysite.com/" into theVariable

That command would download the HTML page at the site "www.mysite.com" and
place it into theVariable.
If you want a file on the internet to be downloaded asynchronously, you can use the
load command instead. This downloads the file and places it in a cache. The cache
can contain multiple files, and can be read multiple times. It is important to make
sure that you empty the cache whenever you are done using something in it,
otherwise it will consume a lot of memory. The urlStatus() function can be
used in conjunction with the load command to give a feedback bar which shows a

 189#204

file downloading. An example of this can be found in the MetaCard tools stack. To
access the script, open the MetaCard Menu Bar as normal, then type:
edit script of stack "Download stack"

into the message box. To see it in action, choose either "tools.metacard.com" or
"help.metacard.com" from the appropriate menu on the MetaCard menu bar.

Tip:It is possible to download images
from the web then import them into
MetaCard for display. Simply "put" the
image data you downloaded into an
image object.

As ever, copying this stack and scripts for
use in your own stacks is probably the best
way to get started.
You can download any type of document
from the web. The most common use for
this feature is to load MetaCard stacks that
are served somewhere on the internet.

You can put things into files by using URL too:
put "some text" into word 3 of line 2 of url
"file:c/test.txt"

 Other File Functions

URL is the normal way of accessing files in MetaCard. Traditional (HyperCard
compatible) file access functions are also supported. In almost all cases, you will find
the URL function faster and more convenient to use.
Here are the basic set of HyperCard compatible file functions:
open file "c:/test.abc" for text read
read from file "c:/test.abc" until eof --eof stands for
"end of file"
put it into tFileContentsVariable
close file "c:/test.abc"

Of course, you can also open files for writing:

 190#204

Tip: Make sure you
understand all of these
file modes, and pick the
right one each time. Its
tempting to omit the
parameters (so both
allowing read and write
of any file you open), but
this is much less efficient
then specifying exactly
what you want to do.
Also, failing to specify
binary when you want to
work with binary data
will not give the desired
results.

open file "c:/test.abc" for write

The append mode always adds to the file at the end, not
the start, which avoids overwriting the contents:
open file "c:/test.abc" for append

Both reading and writing:
open file "c:/test.abc" for update

Finally, you can do all of the above in binary mode, e.g.:
open file "c:/test.abc" for binary read
open file "c:/test.abc" for binary append

Once a file has been opened for writing, appending or updating, you can of course
write to it:
write theVariable to file theFilePath

Finally, an often forgotten command is seek:
seek to 200 in file theFilePath
read from file filePath for 5 lines

In the above example, the first 200 characters in the file are skipped, then the next
five lines read. The advantages of doing this rather than reading the file is that its
faster, and doesn't take up memory to store the contents of the file. Its a bit like
moving an invisible insertion point marker. You can also seek backwards from the
end of a file, in exactly the same way you use any chunk expression backwards. For
example, to seek to the character 50 characters before the end of a file:
seek to -50 in file theFilePath

 191#204

Always remember to close any file you've finished working with. This will make the
file available to other applications, and free up memory.
 Managing files: copying, deleting, and searching, compressing

MetaCard uses only a handful of commands for managing files. However, when you
put them together, you can do quite a few things. For example, to copy a file you
need five lines:
answer file "Select a file to copy:"
put it into tOriginalFilePath
ask file "Save the copy as:"
put URL ("binfile:"&tOriginalFilePath) into URL
("binfile:"&tNewFilePath)

To compress a file:
 answer file "Select a file to
compress:"
put it into tOriginalFilePath
put it & ".gz" into tNewFilePath --add a .gz extension
put compress(URL ("binfile:"&tOriginalFilePath)) into URL
("binfile:"&tNewFilePath)

To decompression is similar:
answer file "Select a file to decompress:"
put it into tOriginalFilePath
put it into tNewFilePath
if char -3 to -1 of tNewFilePath is ".gz" then delete
char -3 to -1 of tNewFilePath
put decompress(URL ("binfile:"&tOriginalFilePath)) into
URL ("binfile:"&tNewFilePath)

 192#204

On the Macintosh platform, its a
little more complex. Mac files
contain two forks: the data fork
and the resource. In this case,
you must use the
getResource(),
copyResource() and the
URL type "resfile:" to copy the
resources in the first file to the
second.

Tip:
You can find out if a particular file exists using the
syntax:
if there is a file someFile
then...

You can rename a file using the rename command.
rename file "C:/example.txt" to "example2.txt"

To delete a file use:
delete file theFilePath

Be careful with this command!
You can use MetaCard to read in lists of files in directories, or search through
directories for files on disk. The principle is simple. Use the directory function
to change to the directory you want to query, e.g.:
set the directory to "C:/"

Then get a list of the files in that directory using the files function:
put the files into theListOfFilesOnDriveC

Now, get the all the sub-directories:
put the directories into tDirectoriesList

 Using files with external applications

To open a file with another application, e.g. to view an Acrobat document in
Acrobat, you use the shell function:
get shell(quote & tAcrobatReaderPath & quote && quote &

 193#204

tAcrobatDocumentPath & quote)

On MacOS systems you use the launch command:
launch "/Macintosh HD/My Application"

The use of quotes is required or the function will fail on paths that contain spaces.
On Windows 95, you'll need to set the hideConsoleWindows global property to
true, to avoid seeing the "MS-DOS" prompt screen that runs when you use shell
().
You can also use the open process command to load applications in a similar
way.
You can use the shell() function to run any MS-DOS command on Windows
based systems, or a command line instruction on UNIX based systems.

Tip:
To find the path to an application (such as Acrobat Reader, above) on Windows 95, use the
queryRegistry function. Acrobat can be found with:
put word 1 to -2 of queryRegistry
("HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AcroExch.Document\
shell\open\command\") into gAcrobatPath

Why word 1 to -2? The registry entry is stored with position of the allowable parameters at the
end. Taking word 1 to -2 takes the first word up to the word second from the end, removing
those parameters.
Another useful one is being able to get the default web browser on Windows systems:
put word 1 to -2 of queryRegistry
("hkey_local_machine\software\classes\http\shell\open\
command\") into gWebBrowserPath

 194#204

Article Difficulty Rating

1 Doing Menus in MetaCard . . .

Menus are really very simple to do in MetaCard. However, they
often prove to be one of the more difficult concepts to get to grips
with if you are just starting out. The important thing to
understand is that menus in MetaCard are really just buttons with
a few fancy properties set. This even applies to the MacOS
version of MetaCard - editing the menu bar is just a case of
moving around buttons on the stack to which the menus are
"attached". Even if you are an old hand with menus, you'll want
to check out our scrolling menus stack, which is available for
download (see the bottom of this document).
MetaCard supports two different methods of doing menus. The
first method is known as a button contents menu. Use it to
construct simple menus which use only the normal set of options
- radio buttons, check boxes, dividers and enabled or disabled
items and hierarchical (or pull right) menus. The second, the
menu panel, is used for doing more complex menus that support
any kind of scripting or control. Use these to make pop up
palettes, menus with graphics, images, icons, or any other
complex type of menu.
 Button Contents Menus

We'll start off by looking at button contents menus. Button
contents menus are buttons, with their text property set to contain
a list of items to pop up. Use the properties palette to create a
button, then set its style to pulldown. Then, put the name of each
menu item on a separate line in the menu contents field. Try out
that button: clicking on it will cause the menu to open. If you
want to dynamically alter the contents of the menu before display,
use a mouseDown handler in the button to set the text property
of the button to whatever you want. Use this technique to add,
delete, check, uncheck, enable or disable items.
To make an item... Do the following...
a dividing line use "-" as the name of the item.

disabled place a "(" at the start of the item
name.

 195#204

a hilited checkbox place a "!c" at the start of the item
name.

an unhilited checkbox use "!n" at the start of the item name.

a hilited radio button place a "!r" at the start of the item
name.

an unhilited radio button place a "!u" at the start of the item
name.

Example:
Item 1
(Item 2
-
!cFourth item
Fifth item
-
Seventh Item
Eight item
(!rItem nine

Button contents menus on Windows and
the MacOS.

MetaCard can use HyperCard compatible syntax for menu
operations. Here's a sample script to disable an item (in this case,
item 5):
on mouseDown
 disable menuItem 5 of me
end mouseDown

And a few more HyperCard compatible examples:
disable menu "Style"
enable menuItem 3 of menu "Style"
hilite menuItem 1 of menu "Font"

MetaCard's native way of handling menus is actually a little
harder to use. The following script does the same as the first
example above, disabling menu item 5:
on mouseDown
 get the text of me
 if char 1 of line 5 of it is not "(" then put "("
before line 5 of it
 set the text of me to it
end mouseDown

 196#204

You may need to use this method to control some MetaCard
specific features, such as placing checkboxes before menu items.
When an item gets chosen, it sends a "menuPick" message to the
button. The menuPick message is sent with the name of the item
chosen. Here is an example script:
on menuPick pWhichItemPicked
 switch pWhichItemPicked
 case "Item 1"
 --do something to handle the first item picked
 break
 case "Second item"
 --do something to handle the second item getting
picked
 break
... etc...
 end switch
end menuPick

Tip: If you prefer to work with item numbers instead of names,
use the menuHistory property. It contains the number of the item
last chosen, instead of the name. Use a switch statement:
switch the menuHistory of me

Button contents menus can also be used to do option style menus,
and comboBox style menus. Use an option menu to create a list
of items. Use a comboBox to create a scrolling list of items where
the user has the option to type the name of the item in instead of
choose it from a list. Use the menuLines property to set how
many lines in a comboBox are visible at one time. Note that
disabling items, checkboxes, dividers, etc. are not supported in
this type of menu.

 197#204

ComboBoxes on Windows and the MacOS. The menuLines
has been set to 5.
When an item is chosen, the label property of the button is
automatically set to the name of the item chosen. In option
menus, when you re-open the menu, it will be positioned with the
item most recently chosen over the mouse. You can get and set
this using the menuHistory property of the button.

Option menus on Windows and the MacOS.

The final type of button contents menu is the tabbed button. This
type of menu can be used to display a tabbed interface, often used
for doing program Preferences screens. The tab items are set as
contents in the normal way. Like option menus and comboBoxes,
using dividers, disabling items and other such features are not
supported.

When a tab is chosen, a menuPick message is
sent to the button. In this case it is sent with two
parameters, the name of the tab chosen, and the
name of the tab previously chosen. The most
common use for this is to hide and show a
group of controls.
If you want to set which tab is currently active,
you can set the menuHistory property of the
button to the number of the tab, e.g.:
set the menuHistory of btn
"tabbed
example" to 2

Note that setting the menuHistory causes a
menuPick message to be sent to the button, just
as if one of the tabs had been pressed with the
mouse.

 198#204

 Menu panel menus

Menu Panels are very different from button contents menus. They
are actual MetaCard stacks, as opposed to a property attached to a
single button. This means you can open them in multiple places
throughout an application without having to duplicate anything.
It also means that you have to draw out the panel yourself, and
you can place any standard MetaCard control in it if you wish.
To create a menu panel, it is simplest to clone the existing menu
panel structure found in MetaCard. Type:
clone stack "MC SelectedObject Menu"

to create an editable copy of the MetaCard object selection menu.
You'll find that all the buttons in the stack have mouseUp scripts,
instead of menuPick handlers. You can use mouseUp messages
attached to each button in the menu, or use a single menuPick
handler like in button contents. In addition, normal messages are
sent to controls in a panel stack. This means you can use the
messages mouseEnter, mouseLeave, etc. to provide additional
functionality if you wish.
To display a menu panel, create a button on the stack you want to
display it. Set the style to either pulldown or popup, and then set
the menuName property to the name of the stack you've created.
You can do all of these operations using the button properties
palette. For example, you could create a button to pop up the
MetaCard object selection menu in anywhere - simply create a
new button, set the style to pulldown and the menuName to "MC
SelectedObject Menu".
If you need to display a panel by script, rather than attached to a
button, you can open the menu stack using a command in a
mouseDown handler. For example:
popup "myStackMenu"

will open the stack "myStackMenu" as a popup menu under the
position of the cursor.

 199#204

Tip:If you only want your panel to open on a button when a
particular mouse button is used, set the menuMouseButton
property. For example, select a pulldown panel button and type:
set the menuMouseButton of the selobj to 3

The button will now only display the menu if you use the third
mouse button. Note that the third mouse button is actually the
second mouse button on Windows systems, and the mouse-
Control key combination on the Mac.

 200#204

 Sub-menus (or "pull right" menus)

If you want to create menus inside menus, you can use either
contents menus with tabs inserted, or create the first menu as a
menu panel. Note that sub-menus inside button contents menus
are only supported in 2.2.1B1 or above, previous versions require
you to use panel menus.
For button contents menus, place tabs before the menu items that
you want to be displayed in a sub-menu. The number of tabs can
be used to indicate the number of levels deep an item is.
For panel menus, the item where you want the second menu to be
displayed should have its style set to cascade. You can either set
the button contents of that button to form a button-contents sub-
menu, or set the menuName property to display a panel inside the
panel. The sub-menu will be displayed automatically when the
mouse moves over the item. Note that you can't use the cascade
style menu in a normal stack - you must use it inside a menu
panel.
 Menu Bars

A menu bar is made from a group of buttons. To create a menu
bar, create buttons corresponding to each menu and, using the
Button Properties dialogue, set the style of the buttons to
pulldown menu. If you're using Windows, set the text and font to
the Windows standard (MS Sans Serif). If you're using the
MacOS, you don't need to set the font - the system font will be
used when MetaCard places your buttons into the MacOS
standard menu bar at the top of the screen.
Set the menu contents of each button to the menu items you
require. Arrange the buttons as a menu bar and group them. Name
the group. To display a menu bar as the system menu bar on
MacOS, use the Stack Properties dialog in the Edit menu to set
the menubar property of the stack to the name of the group.
Whenever the stack is active that group will be used for the
system menu bar.

 201#204

IMPORTANT: On MacOS when you set the menubar property
of a stack to a group which exists in the same stack, the whole
stack is scrolled so that the menu bar group and everything above
it disappears from the window. The height of the stack is actually
decreased by the height of the menu bar group and everything
above it. This is a useful time saver for cross-platform projects
because the same menu bar appears inside the window in
Windows and UNIX, and on the system menubar in MacOS.
However, if you want the group to remain in the stack window
where it is editable on MacOS systems, set the editMenus
property of the stack to true.

 202#204

A good example of an existing menu bar you can take apart and
examine is the MetaCard standard menu bar. The entire MetaCard
interface is written in MetaCard. The menus you see while using
MetaCard are a MetaCard group. The menubar of stack "Home" is set
to the group "MetaCard Menu Bar". If you want to see this group type
the following into the Message Box:
toplevel "MetaCard Menu Bar"-- stack name
happens to be group name

Select the group named "MetaCard Menu Bar" inside this stack. These
are the actual menus MetaCard displays in its editor. Be cautious as
editing this group will alter the MetaCard interface.
 Menu bars on MacOS systems

The menu bar includes the MacOS standard Help menu with the Apple
default items (usually Show Balloons, About Balloon Help). The
righter-most menu button in the menubar group always operates as the
Help menu (and is named Help, regardless of what you call it). The
last item in the menu contents of the righter-most button is used as the
About... menu item in the Apple menu. To capture a user selection of
that item, place a menuPick message handler in the group containing
the menu bar.
If you want to update the contents of the menu bar before displaying
the menus, place a mouseDown message in the group containing the
menus. Note that the mouseDown message is only sent to the group,
not the individual menus. This is a limitation of the MacOS. Another
limitation for the 2.2 release of MetaCard is that you can't use menu
panels in the Mac menu bar. All Mac menu bar menus must be
standard button contents menus (cascade and option styles are not
supported either). If you want to do sub-menus, these must be done
using the sub-menu button contents properties in the 2.2.1B1 release
or above.
If any of the subStacks in your project don't have a menu bar, but you
want one to be displayed set the defaultMenuBar global property
to the one you want displayed. That menu bar will then be displayed
for stacks without a menu bar.

 203#204

Important Note:
Make sure that the buttons in any menu bar you create don't
overlap. If they do, it may cause strange behavior - including
multiple panels being displayed at once. If you're having
problems with a menu bar, check to see that the buttons aren't
overlapping.
 Scrolling Menus

One limitation of MetaCard is that you can't do scrolling menus,
except as the comboBox type. There are plans to add scrolling
menu support to the MetaCard engine. In the mean time, Cross
Worlds has produced a free utility for creating menu panel
menus, which includes full support for scrolling. Fully
compatible with MetaCard on any platform, you can use it to
create menus with greater ease than producing even button
contents menus. The panels created can easily also be edited
easily by script on the fly - just like button contents menus. This
stack comes complete with support for doing cascade (sub-menu)
style menus inside the scrolling menu, with support for scrolling
sub-menus inside sub-menus. (Of course, actually doing this in
your program would make it just about impossible to navigate :-)
Download it here as a Stuffit archive, or here as a zip archive.

 204#204

	Concepts and Techniques
	Reference Manual
	Metaclasses

